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Abstract

We analyse a class of linear wave equations for odd half spin that have a well-posed initial value
problem. We demonstrate consistency of the equations in curved space-times. They generalise the
Weyl neutrino equation. We show that there exists an associated invariant exact set of spinor fields
indicating that the characteristic initial value problem on a null cone is formally solvable, even
for the system coupled to general relativity. We derive the general analytic solution in flat space
by means of Fourier transforms. Finally, we present a twistor contour integral description for the
general analytic solution and assemble a representation of the group O(4, 4) on the solution space.
© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is a well-known fact that many spinor equations that are perfectly well behaved in (flat)
Minkowski space cannot be translated to a general four-dimensional curved background
manifold. This happens e.g., for the zero rest-mass (zrm) fields with spin s > 1 and for
the twistor equation. In these cases the appearance of the Buchdahl conditions ([2,12])
imposes algebraic conditions relating any solution of the field equations to the (conformal)
curvature of the manifold. In the zrm case, these conditions are very restrictive in that they
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limit the solution space of the equations for a general given background manifold. In the
case of the twistor equation one finds that solutions can exist only on algebraically special
manifolds of type N or O. Recently [11], there has been some interest in the case s = 3, the
Rarita—Schwinger system, for which the consistency condition is just Ricci-flatness of the
manifold such that one can regard the vacuum Einstein equations as integrability conditions
for this system of spinor equations.

Despite this very interesting approach to the vacuum Einstein equations and its relation
to twistor theory we want to present here a class of spinor equations which does not have
the drawback of being well defined only on flat space—time (cf. also [14]). In particular,
these are linear equations for a spinor field of half integer spin s, which include the Weyl
neutrino equation as the case s = % The general equation we shall consider may be written
as follows:

Dy
§AN @l D) = 0. (1.1

Here the operator d4 4’ is the standard Levi-Civita spin connection and the spinor field
¢f [;,'.'__CC?) is totally symmetric and has m + 1 unprimed indices and n primed indices,

with m and n being non-negative integers. A simple count shows that the field ¢§B(C’,’,
has (m 4 2)(n 4+ 1) components at every point, whereas the number of field equations is
(m + 1)(n 4+ 2). So the excess number of field equations vis a vis components is m — n.
In the case m < n, we have fewer field equations than components. Typically this leads to
gauge treedom (at least in flat space): for example in the case (m,n) = (0, 1), Eq. (1.1)
gives the self-dual Maxwell equations for a potential ¢, which has the gauge freedom
¢, — ¢, + 3,¢ with ¢ an arbitrary scalar field. Next in the case m > n, we have an over
determined system. This leads to integrability conditions and possible inconsistencies in a
general curved space-time. The classic example is the case n = 0, in which case Eq. (1.1)
becomes just the standard zrm equation for spin (m + 1)/2, which is inconsistent in general,
at least for m > 4. The subject of this work is the case m = n, where there are exactly
as many equations as there are field components, so one might expect that there are no
non-propagating degrees of freedom and no constraints. Indeed we will show that these
equations possess the following properties:

— They can be derived from a variational principle.

- They are conformally invariant.

— The Cauchy problem is well posed in flat space and in an arbitrarily curved spaces.

— There exists an equivalent exact set of spinor fields [10] for the fields when propagating
on a curved background and also when they are coupled to gravity, which means that the
characteristic initial value problem is formally well posed.

— The fields propagate along null hypersurfaces in flat space. However, they do not sat-
isfy the wave equation O¢ = O but an equation D" *'¢ = 0 instead, where T is the
d’ Alembert operator corresponding to the spin connection.

— The general solution in Minkowski space can be given using a variation of Fourier
transforms.

— A twistor description for analytic flat space solutions can be given.
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The plan of the paper is as follows: in Section 2, we present the variational principle and
derive the energy momentum tensor. To do this we need to explain and extend a formalism
given elsewhere [4]. In Section 3, we discuss the Cauchy problem and show the existence of
solutions. In Section 4, we explain the relation with exact sets and discuss the characteristic
initial value problem. Section 5, is devoted to the general solution in Minkowski space and
in Section 6, we show how to obtain solutions by performing contour integrals in twistor
space thereby establishing an isomorphism between analytic flat space solutions and certain
cohomology groups for suitable domains in projective twistor space.

2. The variational principle and the energy momentum tensor

In this section we will derive the spinor equations from a variational point of view. We
will use a formalism described in [4] to derive our results. In order to introduce the notation
and also to transcribe the various formulae to apply to spinors we will briefly review its
basic features.

The starting point is an so(1, 3) principal bundle O (M) over space-time M carrying a
tensorial one-form 8¢ with values in R* and a connection form 6%, with values in the Lie
algebra so(1, 3) of the structure group. There also exists a constant matrix 1, of signature
(1, 3) that is used to construct the Lorentz metric on M. We will require that the connection
be torsion free, i.e., D6% = 0; D is the exterior covariant derivative. Making use of the
standard 2-to-1 epimorphism of SL(2, C) onto the orthochronous Lorentz group to enlarge
the structure group of the bundle and employing abstract index notation we may write
69 = A4 97, = —eA 07 g — € p64 p, thus defining the unprimed and primed spin
connections, symmetric in their respective indices (the sign is chosen in order to conform
with other references). Then the torsion free condition is (note that we suppress the wedge
because it will be the only product we use between forms)

0= dor + 045084 404 5948 Q2.1

We introduce a set of vector fields 9447, 342 dual to the forms 844" and 64 g. Their action
will be extended from functions to indexed quantities by requiring that they be derivations
of the algebra of indexed forms annihilating 644" and 64 g, see [5] for further details.

We define a variation at 8¢ and 69, as the derivative at A = O of one-parameter families
6“(x) and 8%, (1) with 8%(0) = 6% and 69,(0) = 6“;. Denoting the variations by x¢ and
x% we find that x¢ is a tensorial one-form with values in R*, x“, is a tensorial one-form
with values in so(1, 3). Using spinor indices and decomposing into irreducible parts we
have

XM =t pA p 0P8 4 Lo 4 oA petE 4 7N pgBA 2.2)

The variations are not independent; in fact, the torsion-free condition entirely fixes the
variation x5 = x* gcc0€C of the connection for given x“:

E/
XaBcC' = —040B)CEC T tecdaco + dccrtas. (2.3)
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Spinor fields can now be considered as tensorial functions with values in the appropriate
representation of SL(2, C). In particular we consider totally symmetric fields 1//A BC with
m primed and m 4 1 unprimed indices. Note however, that we will switch back and forth
between viewing the fields as tensorial functions on the bundle and as spinor fields on
space—time M (sections in an appropriate associated bundle). With these preparations we
can now write down the following horizontal four-form

£=1m (V35 DYAP ) Tan, 2.4)

with XY, = %eab(-d()” 664 . Note that we consider our spinors to be commuting quantities.
If instead we would need to have anticommuting spinors we would use the real part instead
of the imaginary part in Eq. (2.4). Since £ can be considered as the pullback of a unique
globally defined four-form on M we may define the action A as the integral of £ over M:
A= L. Ttis then easily verified that the variations of A with respect to ¥ () give the
equation (and its complex conjugate):

Dyl EZa =0. (2.5)
Now D = 09, and 9“X) = ) X with X' = ﬁeaba,()"el’B"O‘[. Using this and stripping
off the form X', we obtain the desired field equation:

daatrpghs = 0. (2.6)

Let us now discuss some of the basic properties of this field equation. First, we note that for
m=0 thi% is just the Weyl neutrino equation 34 4-v* = 0, which is the zrm field equation
for spm . Just as the neutrino equation the general equations are conformally invariant if
we assume a transformation of the fields with conformal weight —2. We define the other
irreducible parts of the covariant derivative of ¥,

AB-CD AB--C)

Mgl = (DA//B, e (2.7)
AB--C _ qE' -C) ,
Wyr.cr =0 1/’F "BCT (2.8)
AB-C EAB-C 1 q
Ve —E)F Ve o (2.9)

Then, we have the expansion

AB-- C AEAB-C m AB-C m E(A B-C)
1// o — ———€E(B /1 €€V
E B’ m4+1 ( -Ch m4+2 (@8]

(2.10)

By virtue of the field equation these fields satisfy the following relations (among others):

m AC--D ABC-D
m + laA(A'VC'...D/) = DABII/A/C',“D/. 2.1
(A BC-- D) (A BC---DYE ABC -D
m+ la(A Ch =0 eVyep — —D1// D (2.12)

daarr gD S0 = 0apvES D, (2.13)
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" AB--CD _ BC--D (8., C-D)
g Ayrer iy = _2(—m+—1)D‘/’C’---D' 04" p
m- .8 C-D) m E' ., BC--D
+ ma((;,d/sz) + m—_HD(C!‘g[/_“D!)E/, (2.14)
1 ,
AB--CD B--CD D' ., BC--D
aA(A’MBA..C/) = 2(—m+—2)DwA’B’~--C’ + D(A’I//B’---C’)D’
m+1 C--D)A 1 8. .c-D
+ m—+ ZDA(B‘(//A/B/_“C/ + _m -_+__23(A’UB'~~-C’)’ (215)
B’ ABC--D m+1 (. pgp c-p) C'B'., BC--D
o uph = = [0 gy + D vaC D, ) 2.16)

In these formulae we have used the spinor curvature derivations O4p and Oy pr as
defined in [12]. To further analyse the situation it is very convenient to introduce four
differential operators L, M, M’ and N acting on irreducible spinor fields by taking the
covariant derivative and then projecting onto one of the four possible irreducible parts
(see [5] for a rigorous definition and further details). Thus, for a field ¢ with p unprimed
and p’ primed indices and all its indices down, we identify L¢ = g/ gV a...B)C"---D)»
M¢ = —P/agg/‘//A-uB)C’---E” Mo = —Pa(b;;ﬂ/fcu-D/m-uE, N¢ = pp'dtE' yu pcp.
These operators obey certain commutation rules, most of which are trivial in flat space. The
nontrivial ones are [L, N]¢ = —%(p +p' +2)D¢ and [M, M']¢ = —%(p — p)O¢. There
is a further relation: LN¢ — MM'¢ — %p(p/ + 1)0O¢ = 0. The wave operator commutes
with all the derivative operators. In flat space, Egs. (2.11)—(2.13), and Eq. (2.15) above can
be written as follows:

Mr=0, Mv=0 Mpy=3i0y,

m+1
2m

Ni=—-m(m+ D)Ly + $@m +3)0y, Lv=— ay. (2.17)
‘We observe that v and A are spinor fields of the same class as i obeying the same equation.
In contrast to the zrm case, the field v does not obey the wave equation Oy = 0 (unless
m = 0, because then ;. = 0). However, with these preparations it is now easy to prove the
following proposition.

Proposition 2.1. Given a smooth spinor field yr withm primed and m + 1 unprimed indices
subject to the field equation (1.1), then O™ *Y vy = 0 in flat space.

Proof. We prove this by induction on m. The case m = 0 is the Weyl neutrino equation
for which the assertion is true. Now assume it is true for (m — 1), then O"'v = 0. But then
0=L0O"y =0"LNy = 0" (3(m + D)’O)y = 1(m + 120"y, 0

Finally, we want to derive the energy momentum tensor of these spinor fields. This
is usually done by considering the action as depending on the metric of the background
manifold and then varying with respect to that metric. The result is the natural object that
would appear on the right-hand side of the Einstein equations if the system were coupled to
gravity. In our case we cannot regard the action as depending on the metric, we have to take
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it depending on the canonical one-form. Then the variation of the action with respect to 8¢
contains terms proportional to 045 4/g’, Tap and o. The functional derivative of the action
with respect to o 4 g 4+ g is the trace free part of the energy momentum tensor, while taking
the functional derivative with respect to o gives the trace part. However, in the present
case, we expect this term to vanish due to the conformal invariance of the equation and the
functional derivative with respect to 74 g will be seen to vanish as well. This is related to
the fact that the connection is required to be torsion free. The variation of the action with
respect to 644" is 8.A = Im [ 8L with

SL={(m+DPp 5 x A ey OF —mu g B X E vl N San
+ (Wp B Dy pB Y8 Ean (2.18)

Using a formula (which however contains a misprint) from [4] we find the formula § £, =
2 Xb[h Z,). If we now Put all the o-terms in x4 5 equal to zero, retaining only the 7 terms,
we get

O)E ~A'BLC w=E'
L= (0m+ Dy B De ey b —my i DEE py G
+ ,’[,E B C/Di,lfg/B CCTA EE}Zanr. (2.19)

Integrating by parts and using the field equation several times gives

SL=—Yp B C A DYBC s, 0+ myf B C T Dy B Cx,
AU B DY pB e s+ YA B DY P B, (2.20)

Now the first and third term cancel, while the second and fourth term combine to a multiple
of the field equation. Hence the functional derivative of the action with respect to the t
terms vanishes. By a similar argument one can show that the terms proportional to o also
vanish so that one has to consider only the trace free parts proportional to o4 g 4'g. In this
case the calculation is similar but more complicated, so we only state the result. The energy
momentum tensor of the spinor fields subject to Eq. (1.1) is

DA BYBAC-p MC2m+1) -y proapc.
TABA d =Im [(Zm - 1)1)[/(‘ ( )‘C’-)nD’ - —m CPD b MKerip ’

m*2m+7) - wpcpiA B)CmDi (221)

T Dt Cr e

By construction, it is divergence free and due to the conformal invariance it is also trace
free. Note that it is made up of the fields and all the non-vanishing irreducible parts of its
first derivative. The case m = 0 agrees with the conventional energy momentum tensor for
the Weyl equation.
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3. The Cauchy problem

In this section we will prove that Eq. (1.1) has a well-posed Cauchy problem, i.e., we
will show that given appropriate Cauchy data on a spatial hypersurface S there will exist
a unique solution of Eq. (1.1) on a small enough neighbourhood of S. So existence and
uniqueness will hold (only) locally in time.

We will first examine the hyperbolicity properties of Eq. (1.1). Let us write the field
equation in the form

88, -+ 856868, - 858E)8pp Y P S =0, 3.

We abbreviate the product of §’s by A7, thus introducing the clumped indices a ~ AA’and

v, [i, indicating elements of the spin space §48-C and its complex conjugate dual space.
g p1in sp B..C p Jug p

Then Eq. (3.1) has the form
AEVGGW” =0. 3.2)

For each covector p,, pa Afzv defines a map P from S" into S; which is easily seen to
define a sesquilinear form on SV. Before proceeding further, we will prove two useful
lemmas concerning the map P.

Lemma 3.1. The map P is an anti-isomorphism if and only if p, is not a null vector.

Proof. For the sufficiency we use induction on the number m of primed indices. Form = 0
the map is v > paavA. If paav? = 0, then pg/pA/AvA = —%pzvl) = 0, where
p? = pap®. Hence, if p2 # 0 then P is injective and therefore bijective. Now suppose the
statement is true for an integer m — 1; we will show that this implies that it is also true for
m. In this case the map is A’g,l?_'_"cc, > pA(Arkg,li'."CC,). If pA(A/Ag,I?_'.“CC,) = 0 then also 0 =
/ e .en / - . . . .

pA BpA(A'Agﬁ“CC,) = (m/(m+ l))pA(B/A_’_‘.g,)g,pA p. The induction hypothesis implies
that poB' A48~ = 0 and therefore ps 42577 = 0 but this implies p* P paady? 5 =
% pz)\gf""cc, = 0. So, if p> # 0, the map is injective and therefore bijective. If p*> = 0,
then we may write p44' = pa pa’ for some spinor p4 and its complex conjugate and then

AQ}?""'C‘; =pApB.. . pCpp - -pcrisa non-vanishing spinor that is mapped to zero. O
Lemma 3.2. The determinant of the sesquilinear form defined by P is
det(paA%,) = c(pap™)"'?, (3.3)

where N = (m+1)(m+2) is the dimension of S and c is a non-zero real number depending
on the choice of basis.

Proof. Consider the “characteristic polynomial” Q(p) = det( paA;’-w). As a determinant
it is a Lorentz scalar and since the only available scalar for a given p, is p, p? it follows
that Q(p) is a function of p, p®. Since Q(p) is a homogeneous polynomial in p, of degree
N, the result follows. Another way (which is useful later) to see this is the following: The
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determinant is proportional to €1 #¥ p, A‘;-“ by pl,A‘:-LN € 'Y where €' is a (dual)
volume form on S". As such it is built up from the volume form €45 of spin space. After
contracting away all the €’s in the expression we are left with N' p,,’s which are all contracted
with each other. Due to the identity pa4 p*? = 1 p,p“es® each pair of p,’s contributes

one factor p, p“ to the determinant. Since there are N /2 pairs, the result follows. 0

From these two lemmas, we see that the system (3.2) is not symmetric hyperbolic unless
m = 0. If this were the case, then there would exist a time-like future pointing covector p,,
such that puA?w was hermitian and positive definite. Although the system is symmetric,
it is not definite. For let p, be any time-like future pointing covector with p, p“ = 2 and
choose a spin frame (0*, 1*) such that p, = 0404 + tata. Then we choose A3 ¢ =
0%08 ---0%0p - - 0o¢ and find that A# p, A% A" = 0 if m > 0. This, of course, implies
that not all (real and non-vanishing) eigenvalues of puAjil , can be of strictly one sign. In the
Weyl case it is well known that the equation can be written in a symmetric hyperbolic way.

To proceed further we determine the characteristics of the system (3.2). These are surfaces
locally described by the vanishing of a function ¢ such that it is not possible to determine
the outward derivatives of a function from the given Cauchy data on the surface. Hence, on
these surfaces the “characteristic equation” det(A;i“, d,¢) = Oholds. Because of Lemma 3.2,
each characteristic surface is a null surface. At each point of M the normal characteristic
cone defined by Q(p) = 0 coincides with the null cone at that point. However, unless
m = 0, the characteristic cone has multiple sheets which implies that the system is not
strictly hyperbolic. The theory for non-strictly hyperbolic ditferential operators is not as
well developed as for strictly hyperbolic or symmetric hyperbolic operators. However, in
our case, we can apply a theorem of Leray and Ohya [7] on non-strictly hyperbolic systems
of partial differential equations. Their main assumption is that the characteristic determinant
Q(p) factorises such that each factor is a strictly hyperbolic polynomial ! which certainly
is the case here because p, p“ is a strictly hyperbolic polynomial of degree 2. They show
that for Cauchy data on an initial nowhere characteristic surface S which belong to a Gevrey
class of functions with index « the system has a unique solution in that class. This solution
admits a domain of dependence, i.e., the value of the solution at a point depends only on
the Cauchy data in the past of that point.

Let S be aspacelike hypersurface in M and 1 atime-like vector field on M. Define a time
function t on M by the requirement that # = 0 on § and that 7“3,+ = 1. We define spacelike
surfaces S, as the surfaces of constant r. Given coordinates (x', x2, x%) on § we can con-
tinue them off S along r¢ by Lie transport, i.e., by requiring that the lines x' = const. are the
integral curves of 9. Thus, we obtain a coordinate system (f = x", x', x*, x*) on an open
submanifold ¥ of M that is topologically § x R. We choose a spin frame (o™, () such that
0?0 14" = /20, theunitnormal to S;. Then ¥ 4 5...c g'...c- has components ¢ = ;-
witha =(m+Dk+k,0<k <m+1,0<k' <m(suchthat® <a < (m+ 1)(m+2))

'A polynomial Q(&) of degree n is strictly hyperbolic iff the cone C = {£: Q(§) = 0} has a non-empty
interior such that each line through an interior point not including £ = 0 intersects C in exactly »n distinct
real points.
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and

—_ ! s ’ Y A v e 0. ... e /. K
Vi = WA..BC...DA'.B'C'...D! O 0”1 Fo 0’ { 3.4)
k K
By taking components of Eq. (1.1) we obtain a system of equations of the form (D, denoting
the partial derivative with respect to x%):

G4 (t, )D.yP + Ig (1, x)yf =0. (3.5)

Here the functions G‘;;“ (t, x) are functions on M which are algebraic expressions in the
metric components g, with respect to the coordinates (¢, x) = (xo, x! x2, x3). The func-
tions 1"5‘ (t, x) are algebraic expressions in the coefficients of the spin connection. We define
ag (x, D) as the linear differential operator in (3.5). Then we consider the following Cauchy
problem:

ag(x, D)y (x) =0,
¥Ps s given. (3.6)

Itfollows from Lemma 3.2 above that up to operators of lower order than N = (m+1)(m+2)

we have det(ag (x, D)) = OVN/2 where we define the determinant of non-commuting quan-

tities by the usual formula det(ag (x,D)) = Z"eSN sign(m) a}t(l) . aj’TV(N). O is the wave

operator with respect to the metric g,5 expressed in the coordinates (x*). This operator is
strictly hyperbolic with respect to the hypersurfaces S;. We are now in a position to prove
the following theorem.

Theorem 3.3. Let o be a real number with 1 < a < N/(N — 2). If the metric coefficients
are in the Gevrey class yo(g/ 2)N’(‘I)(E) and if the initial data y? are in the Gevrey class
yz(a)(S) then in a sufficiently narrow strip ¥’ = {(t,x):0 < t < T} around S the Cauchy
problem (3.6) has a unigue solution y* ¢ y2] TN2@ (X), whose support is contained in

the domain of influence of the support of the initial data. ' = X if | <a < N/(N —2).

Proof. This is a straightforward application of theorems of existence and uniqueness in
Section 6 of [7]. We only need to determine the various integers needed in the theorem.
We associate the integers m? = 1 with each unknown function ¥# and the integers n% =
0 with each of the equations such that order(ag(x, D)) <mP —n®* = 1. Thenm =
> 8 (mP — nP) = N is the order of det(ag (x, D)). Each of the factors in the principal part
in det(ag (x, D)) is equal to the wave operator such thata; = 0J, mj=2for(j =1,...,N)
and the number of factors is p = N /2. Since in our case r = 1, we need to add to each of
the integers m# and n® the same integer N /2 in order to satisfy the chain of inequalities

O<r<p<n<n®<n, n<mP, p<m, (3.7

as required in [7]. With our choice of the integers we have m# = 1 + N/2, n® = 0, p =
N /2 = n = n and the inequalities are satisfied. According to the theorem the index « of the
appropriate Gevrey classes lies in the interval 1 < a < N/(N — 2). The coefficients of ag
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are assumed to be in ych/z_l'(a)(Z‘),thoseofaj arein y"'%N/z‘(a)(E)forO <j<N/2-I.

Since all the factors are the same, a ; = 0O, this implies that the coefficients are in fact in the

smallest possible class which is yg_ (@) (X). The coefficients of the operator a have to be

in the class yolg/ 2@ (X). Taking all this together and remembering how the coefficients in

the operators are constructed from the metric, this implies that the metric coefficients have

to be in y;N/ 2.() (X). Then, the conclusion of the theorem implies that the solution of the
Cauchy problem is in the Gevrey class y;JN/ 2 (@) (). O

According to this theorem there exists a strong correlation between the spin of the field
and the degree of smoothness of the space—time that admits a solution of the equation. The
higher the spin, the “smoother” the space~time has to be. The smoothness is controlled by
the number of components of the field, N, which depends quadratically on the spin m + &
of the field. We can improve on this relationship somewhat by using a simplification due
to Bruhat {1] which is based on the observation that if all the minors in det(ag) have a
common factor, then this factor can be ignored which results in a reduction of the number
p of factors of det (ag (x, D)) and therefore in the Gevrey index «. To be more precise, we
need to prove the following lemma.

Lemma 3.4. In the adjoint matrix of paA:il , all the entries have the factor (p, p“)™ (10,2
in common.

Proof. As in the proof of Lemma 3.2, this result can be obtained by “index counting’.
The adjoint matrix is given by the expression &//2An 17(,7_1‘\;5;'2”2 B PuNA;;‘l‘,v‘\,e""f“"'f",
homogeneous of degree N —1 in p,. If we contract over all the indices contained in all the € 's
in the volume forms we are left with an expression that contains N —1 = (m+1)(m+2)— |
Po’s, each with one unprimed and one primed spinor index and has (2m + 1) free indices
of either kind. Therefore, (N — 1) — (2m + 1) of the p,’s are contracted together, resulting

in a factor (p, p*)"™™+D/2 in each component. 0
This lemma allows us to prove the following corollary.

Corollary 3.5. In the statement of the theorem we can extend the range of the Gevrey index
atol <a <1+ 1/m. More precisely, if the metric coefficients are in the Gevrey class
y30m+3‘(u)(2) and if the Cauchy data are in yz(a)(S), then the Cauchy problem (3.6) has a

unique solution W? y2m+2‘(a)(2’) in a sufficiently narrow strip X' around S.

Proof. We observe that in proving the existence theorem Leray and Ohya use a theorem for
systems with diagonal principal part (see Section 5 of [7]). To apply this theorem one mul-
tiplies the system (1.1) with the differential operator corresponding to the adjoint matrix of
PaAY, - This renders the principal part of the resulting system diagonal. Due to Lemma 3.4,
it is enough to multiply with the operator (of lower order) obtained from the adjoint matrix
by dropping the common factor. Then one obtains the result in a straightforward manner

by applying the theorem for diagonal systems. a
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To end this section we want to make several remarks.

— The case m = 0 (the Weyl neutrino equation) is the strictly hyperbolic case where we can
choose o = oo. This implies that it is possible to prescribe initial data with only a finite
number of continuous derivatives which is a known result for strictly hyperbolic systems.

— It is also worth to mention that in all the cases there exists a domain of influence, a fact
which is taken to indicate the hyperbolic character of partial differential equations by
many authors.

— The fact that the smoothness of space-time is strongly linked with the spin of the field
is an interesting feature of this class of equations that is not present in other spinor equa-
tions. One has to say, though, that it is not known whether this is a necessary consequence
since the theorems only provide sufficient conditions for existence and uniqueness.

— The diagonal system used in the proof of the corollary corresponds to the equation
oty g‘ff C,C = 0 that we derived in the flat case in Section 2. This equation is distin-
guished by the fact that it is a linear equation for g,‘? C,C such that the coefficients are
functions not of the connection but of the curvature and its derivatives only.

— The inhomogeneous equation 344’ ¥ g,tf C,C) =X f,'éf” ¢ can be treated in a straightfor-
ward way and one obtains existence and uniqueness of solutions in the same Gevrey
class as for the homogeneous case provided that the right-hand side is in an appropriate
Gevrey class, see [7].

4. The formal characteristic initial value problem

In this section we want to discuss the formal aspects of the characteristic initial value
problem on a null cone for this class of spinor equations. Due to the inherent singularity at
the vertex of a null cone this problem is very difficult to analyse and, in fact, there are no
existence results for many partial differential equations appearing in physics, most notably
the vacuum Einstein equations. So one has to resort to formal methods to obtain at least
results about the feasibility of existence theorems. A very useful method to achieve this
which is adapted to four dimensions is the method of exact sets of spinor fields developed
by Penrose [9]. It is based on the observation that in Taylor expansions of spinor fields
around a point it is exactly the totally symmetric derivatives of the field that determine the
restriction of the field to the null cone of that point (the null datum). Roughly speaking, if a
system of field equations for a collection of spinor fields has the properties that the totally
symmetric derivatives are algebraically independent and if they determine algebraically all
possible derivatives of the fields then the collection of fields is said to be exact (see [10,12]
for the rigorous definition).

It has been useful to employ an algebraic formalism based on the four derivative operators
L, M, M', N (already mentioned in Section 2) which correspond to taking the four possible
irreducible components of the covariant derivative of an irreducible spinor ficld. We will
not describe the full formalism here because it would take up too much space. Instead we
will only give a brief summary and refer for further details to [5]. The totally symmetric
derivatives of a spinor field correspond to applying powers of L to the field. We will call an
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irreducible spinor to be of type (k, k) if and only if it has k unprimed and k" primed indices
(irrespective of their position). Acting on a spinor field of type (k, k) the operators L, M,
M', N produce fields of respective type (k + 1, k" + 1), (k + 1L, k' = 1), (k — 1, k' + 1),
(k — 1, k" — 1). We define the operators H and H' by H¢) = k¢ and H'¢p = k'¢) for a type
(k. k") field ¢.

As we have already mentioned in Section 2, the commutator of two covariant derivatives
induces commutation relations between the derivative operators which in general involve the
curvature of the manifold and in addition the wave operator. The curvature is characterised
by three spinor fields ¥, @ and A of respective types (4, 0), (2,2} and (0. 0). Before we
present these relations we need to define an algebraic operation between two spinor fields ¢
and x of respective types (p, p') and (g, ¢"). The only possible way to combine two spinor
fields within the class of totally symmetric fields in a bilinear way is by contracting over
some of the indices and then symmetrising over the remaining lot. This operation is entirely
characterised by the numbers of contracted primed and unprimed indices. So we define the
bilinear pairings Cy; by the correspondence:

A[\B B,
Ci (@, X)—¢>(C D(C"- Dr‘ XAy B E FY B F)e (4.1)

I’ k
Then, the commutation relations between the derivative operators can be given explicitly
as
[L.Nl=—(H+DT' = (H'+ DT — 3(H + H' +2)0,
(M. M'| = —(H + DT+ (H'+ DT — §(H — H)O, “2)
[L,M]=—(H +1)S, [L,M']=—(H+ 1S, .
[N,M]=(H+ 1)HU’, IN.M'l=(H +1U.
The operators S, T and U and their primed versions are curvature derivations and act on a
field ¢ of type (p, p’) according to

S¢=pCiy (¥, ) + p'Co1 (P, ¢). (4.3)
Té=p(p— 1)Cay (¥, )+ pp'C11(D, ¢) — p(p +2)Cop (A. §). (4.4)
Up=p(p—1(p—2C(¥,¢)+ p(p— Dp'Cap(P. §). (4.5)

The action of the primed operators can be inferred from these by formal complex conjuga-
tion. There exists an additional relation between the derivative operators, the wave operators
and the curvature:

LN —MM' =—(H' + DT + $H(H + 1O, (4.6)

The formulae describing the action of a derivative operator on a bilinear pairing are quite
lengthy and it is not necessary for what follows to present them in detail (see [5]). Symbol-
ically, they are given by

OC($. x) = _a1C(Of. g) + xxC (£, Og), 4.7)
o
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where O is any of the derivative operators L, M’, M or N and «;; and «; are rational numbers
determined by the bilinear product and the type of ¢ and yx.

In [5] we showed that a collection of fields {¢;} is exact if and only if two conditions are
satisfied:

(i) all the “powers” L ¢; are algebraically independent,
(i) all the “derivatives” of the fields, i.e., all the expressions s¢;, where s is an arbitrary
string of derivative operators are algebraically determined by the powers.
By algebraic independence we mean that there are no relations between the powers involving
only the bilinear pairings (and possibly the curvature). In the same spirit we mean that the
derivatives are determined by exactly such relations in terms of the powers. Several examples
have been treated in [3,5,12]. In a certain sense, the powers form a complete and independent
set of functions that generate the solution space of the equations considered.

Before we consider the general case we want to study the flat case to find the exact set
structure underlying Eq. (1.1). So let ¥ be a field of type (m + 1, m) satisfying the equation
M’y = 0. Referring again to [5], we see that in that case the expressions L' M* M’/ N0y
for positive integers /, &, j, n and i generate the solution space. By use of the field equation
and the commutation relations we have j = 0 since all terms with j > 0 vanish (note
that in flat space O commutes with every derivative operator). Similarly, i < m because of
Proposition 2.1 andn+k < mbecause M and N each contract over one primed index. Due to
the additional relation (4.6) we have the following: L' M*N"O'y ~ L'M*ON"O "1y ~
LIHIMENTHIOI=ly ~ oo~ LIH MK N7y where a ~ b means “a is expressible in
terms of b”. So we find that in the flat case the solution space is generated by the powers
of the functions ¥;; = M* Ny, with 0 < k < mand 0 < i < k. Note that there
are %(m + 1)(m + 2) of those functions. This number is in agreement with the general
observation that the number of null data per point for a partial differential equation is half
the number of Cauchy data per point.

We now claim that the same set of fields is also a generating set in the non-flat case.
Before we prove this statement we need some more preparation. Let s, denote any string of
derivative operators of length n. We say that s, is in normal order if and only if it has the form
sp = LIM*N' M’/ with | + k 4 i + j = n. With each string s,,, we can associate a unique
normally ordered string s, of the same length in the following way: if s,, does not contain M’
then §;, is the unique normally ordered string that contains the same number of operators as
s, does. If there are M’ operators in s,,, we first replace each pair (M, M’) which need not be
adjacent with (L, N) until thereis no M or M’ left. Then we bring the result into normal order
to obtain §,. Thus we get normally ordered strings containing either M or M’ but not both.
Upon applying these normally ordered strings to 1 we get zero for all strings containing
M’ and for those strings with k +i > m. The others resultin L' M* N'vyy = L'+, ;; these
functions and their complex conjugates will be called a normally ordered derivative or a
“power”. For each power L!;; we call | + k its order. Furthermore, we need to formalise
the structure of the relevant terms that will be encountered.

Definition 4.1. A r-rerm (““t” for “tree”) is recursively defined either
(i) as a power L Wi or L Y; for non-negative integers [, k, i or
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(ii) to be of the form Cy/ (R, t) where R is any derivative of any of the curvature spinors
and their complex conjugates and 7 is a t-term.

A t-expression is the formal finite sum }_; o;#; with coefficients ; € @ and t-terms ;. A
t-term that is not a power will be called a pure t-term and a pure t-expression is a Q-linear
combination of pure t-terms.

The pure t-terms are binary trees with Cy;s as nodes and with powers or (derivatives of)
curvature spinors as leaves. In fact, exactly one leaf is a power all other ones are curvature
derivatives. This reflects the linearity of the system. We are now ready to prove the following
lemma.

Lemma 4.2. Let v be of type (m + |, m) and satisfy the equation M'y = 0. Let s,, be an
arbitrary string of length n of derivative operators. Then s, can be written in a unique
way as sy, = aspy +t, where a € Q and t is a pure t-expression which contains only
powers of order strictly less than n — 1.

Proof. We use induction on the length of the string. With n = | there are four possibilities:
Ly = Lyrgg, Myr = ry9, M’y = 0 and Ny = yry1; so the statement is true.

Let O denote any of the derivative operators and assume the statement to be true for
all strings s of length less than or equal to n. Then consider (Os,)¥ = O(s, ). By the
induction hypothesis and linearity of O we need to consider only two cases, namely s, v is
(i) a pure t-term or (ii) a power. In case (i) we need to employ (4.7) to apply O to a bilinear
pairing, thus bringing O inside the Cy;’ to act on each of its arguments. Note that then
O is not necessarily the same operator we started with. When it hits the left argument, O
converts a curvature derivative into a higher one thus producing a t-term of the required type.
The other argument is again either a power or a pure t-term. In the latter case we continue
descending down the tree structure until we finally hit the power. Then we need to consider
O L' ;. By the induction hypothesis this is a derivative of y of order/ + k + 1 <n — 1
and therefore equal to the sum of the corresponding normally ordered derivative of ¥ and
a pure t-expression with powers of order less than n — 3. The normally ordered derivative
is (when non-vanishing) equal to a power of order n — |, hence the application of O to a
pure t-expression yields a pure t-expression of the required type.

In case (ii) we have s, = LII//ki with / + k = n. Let us first suppose that/ > 1. Then,
OL' i = [0, LIL'" "W + LOL'""4;;. In the second term we can replace O L'y,
with the sum of the normally ordered derivative and a t-expression by the induction hy-
pothesis. Then applying L yields a normally ordered derivative of order n + | and, as was
just shown, a t-expression of the required type. So we are left with the commutator term.
If O = L we are done. If O = M or O = M’ the commutator term is equal to a linear
combination of curvature terms by (4.2) and (4.3)—(4.5) which are t-terms of the required
type. When O = N we obtain apart from curvature terms as before a term involving the
wave operator. This term can be rewritten using (4.6) as a linear combination of curvature
terms and the terms LN L/~ Yy and MM -1 Yg;. The first term has been shown above
to be of the correct type and with a similar argument one shows that the second term also.
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Now suppose! = Oand k > i. Then we need to look at a term of the form O M M*—I = Ny
The only non-trivial cases are O = M’ and O = N. In the latter case we find that the com-
mutator term is a curvature term and therefore of the correct type. The other term is shown
to be correct by similar arguments as above using the induction hypothesis. In the case
O = M’ only the wave operator term appearing in the commutator term needs a different
treatment. But this has been shown above also to lead to correct terms.

The last case is [ = 0 and k = i. Then we are looking at ON N‘~!4. Here all cases are
trivial except for O = N and this case is treated as above. So, in summary, we have shown
that all the appearing terms are of the stated type and hence the lemma is proved. O

From this result we can obtain a set of equations satisfied by the functions ;. Consider
My, a derivative of i of order k + 1; therefore, there exist equations

MY = agi Lkiv1 + 1, (4.8)

and similarly

My =Y, (4.9)
N = Yot r,iv1 + ti (4.10)

where ay; = 0 if kK = i, and where 7;; and t,ii are pure t-expressions which contain 1;
with{ < k — 1 and possibly Lyy;; with I < k — 2. If we regard these equations as the field
equations for the fields y; then we can state the following theorem.

Theorem 4.3. A formal solution of (1.1) gives rise to a formal solution of (4.8)—(4.10) and
vice versa. The set of spinor fields {Yry; 10 <k <m,0 < i <k} is exact.

Proof. The equivalence of the two systems is obvious. We need to show the exactness. Here,
condition (ii) concerning the completeness of the powers is an immediate consequence of
the lemma. The condition (i) concerning the independence of the powers can be verified
as follows. Any relation between the powers has to be generated by the application of the
commutation relations and (4.6) to the field equation (1.1) and all its derivatives. From
looking at the structure of these relations one finds that they cannot link any derivatives that
contain more than two adjacent L’s. So all the relations that can be generated must already be
conditions on the derivatives of the field equation. But this is a condition only on derivatives
of the form s, M’y and not on any power. The other possible source for conditions on
powers come from the (derivatives of the) defining equations of the v, : ¥, = M*¥ I Ny,
However, these are not algebraic relations but differential relations between the functions
and — upon taking derivatives — between the powers. So there cannot be any relations
between the powers, which therefore are independent. O

This theorem shows that the characteristic initial value problem for Eq. (1.1) is formally
well posed. This is, of course, a rather weak statement, implying only that one can prescribe
certain components of derivatives of 1 on the null cone of a point in an arbitrary way and
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that this is just enough information for a unique solution to exist on the level of formal
power series.

The exact set {1, } is not invariant (cf. [12]) because in the expressions for the derivatives
in terms of the powers there appear the curvature spinors together with their derivatives
which are taken to be known background quantities. Thus, these expressions depend on the
actual point in space—time, i.e., the vertex of the null cone. Since the field equation comes
from a variational principle and since, therefore, there exists an energy momentum tensor we
can couple the system via Einstein’s equation to the curvature. Thus, we write G, = 87 T,
with 7, from (2.21). Then we know how to express the curvature spinors ¢ and A in terms
of ¥ and its first derivatives. In fact, A = 0 due to the conformal invariance of the equation.
We can interpret ¥ as describing some kind of matter field whose energy content creates
the curvature of the manifold. We have one more unknown function to consider, the Weyl
spinor ¥ which is subject to the equation (a part of the Bianchi identity) M'¥ = 2M®.
Referring to a theorem in [S] we see that the enlarged set {;. ¥ ) will be an invariant exact
set on M provided that we can show that M is a t-expression and that N¢ = 0. We
need to interpret the term “t-expression” a little different now because whenever A or &
appear in the expressions we need to substitute their respective representations in terms of
the fields v;;. Thus, we obtain an actual tree structure built from the bilinear pairings whose
leaves consist only of powers L/y; and L' and their complex conjugates. This reflects
the nonlinear nature of the coupling to gravity. The conditions above are easily verified, in
fact, N@ = 0 is just the condition that the energy momentum tensor be divergence free and
since @ itself is a t-expression its derivative is also a t-expression as was shown above. So
we have effectively proven the following theorem.

Theorem 4.4. The set {{;, W} subject to Egs. (4.8)—(4.10), Einstein’s equation and the
Bianchi identity is an invariant exact set.

Thus we can make a similar statement as before concerning the system coupled to gravity.
The formal characteristic initial value problem is well posed. In this case, we do not have
a similar result for the Cauchy problem.

5. The general solution in Minkowski space—time

Our aim in this section is to present the general solution of the field equation (1.1) in flat
space subject to suitable initial and boundary conditions. Since each such solution is also a
solution of 0"y = O for some positive integer m we will first derive the general solution of
that equation. Since this does not depend on the existence of spinors and on the dimension
of space-time we present the result in a slightly generalised form for arbitrary space—time
dimension. So we are working in M = R!"~!, Then we will specialise to four dimensions
and restrict the kernel of O™ to those spinor fields that do satisfy (1.1). Since in flat space
we are dealing with a partial differential equation with constant coefficients the general
solution could be found using methods from the theory of distributions. We will, however,
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not pursue this here but present a different approach which fits better with the applications
we have in mind.

We begin by introducing certain rings of functions associated to the null cone of mo-
mentum space. A function f (k) defined on the null cone in “k”-space will be said to be
admissible if and only if it obeys the following conditions:

(i) f(k) is defined for all null vectors k¢,
(i) f(0) =0,
(ii1) the function f is smooth on the complement of the origin,
(iv) lim,_, o (+" f(tk)) = 0, for any real number r and for any non-zero null vector k“; this
limit must be uniform on compact subsets of momentum space.

Condition (iv) controls both the “infrared” and “ultraviolet” behaviour of the function
f (k). Condition (iv) is needed to guarantee the differentiability and integrability of Fourier
transforms involving the function f (k).

Denote by K, K+ and K ~ the rings of all admissible functions, all admissible functions
that vanish identically on the past null cone, and all admissible functions that vanish on the
future null cone, respectively. Note that we have the vector space direct sum decomposition:
K=KT®K~.

For any subspace R of a ring and any vector variable X denote by R[X] the space of
all polynomials in the vector X with coefficients in the subspace R. In particular if R is
itself a (sub)ring, then R[X] is a ring. For any non-negative integer m, denote by R,,[X]
the subspace of the space R[X] consisting of polynomials of degree less than m + 1 and
by R™[X] the subspace of R,,[X] consisting of all polynomials homogeneous of degree
m in the variable X. In particular, for x a space-time vector-valued variable, we have that
every element ¢ (x, k) of the ring K[x] has an explicit expression as a polynomial in the
variable x of the following form:

G k)= XX X Gy gy, (). 5.1
=0

Here each coefficient tensor, ¢4, 4, ..., (k), is completely symmetric and is an indexed element
of the ring K. Also, only a finite number of these coefficient tensors is non-zero. Henceforth,
each infinite sum we encounter will have only a finite number of non-zero terms.

Denote by 3, the derivative with respect to the variable x and by O = g,,398” the wave
operator, regarded as an endomorphism of the space K[x]. Denote by L[x] the kernel of
this endomorphism and define L*[x], L,,[x] and L,J;[x] as the intersections of the space
L{x] with the spaces KT [x], K,,[x] and K ¥ [x], respectively. Consider the operator k,3“
as an endomorphism of K[x]. Since the operators O and k,0¢ commute, k,0¢ restricts to
an endomorphism, denoted D, of L[x]. Note that D is the derivative operator along the
generators of the null cone restricted to solutions of the wave equation in K [x].

5.1. The operator D

Proposition 5.1. The operator D : L[x] — L[x] is surjective provided the space—time is
at least three-dimensional.



J. Frauendiener, G.A.J. Sparling / Journal of Geometry and Physics 30 (1999) 54-101 71

The proof of this first technical result is rather lengthy and proceeds in several steps.
We first perform a decomposition into space and time to obtain an expression for a general
element of L[x]. First pick a unit time-like future pointing vector t“ and denote by § the
orthogonal complement in space—time of the vector 4. We shall use lower case Latin indices
from the middle of the alphabet to label the (spatial) tensors of S and shall write y; for the
negative of the (flat) metric induced on § from the ambient space—time metric. Then the
position vector x? decomposes as x4 = (1, & "), where r = x“t, and one has the relation
xx, = 1*—&'¢;, where the tensor vix and its inverse are used for index lowering and raising
for spatial tensors. Correspondingly, the operators O and D decompose as [J = 37 — A,
where A = y,-kaéaé, and D = k9, — (k- d¢ ), where k' = (k. k), Kk = k9, and k-0 = k; E)é.
Note that since the vector k¢ is null, we have the relation «° = «'«;.

Given ¢(x, k) € L[x], define ¢g(&, k) € K[§] and ¢ (€. k) € K[£] to be the restrictions
to the subspace S of the functions ¢ (x, k) and 1,3“¢ (x, k), respectively.

Lemma 5.2. The mapping ps : L[x] — K[E]% ¢ — (¢o. d1)isan isomorphism, mapping
each solution of the wave equation to its initial data on S.

Proof. Given the pair (¢o(£, k), ¢1(&, k)) € K[£]", the function ¢(x. k) = ,o;'((d)()(é. k),
¢1(£. k)) may be given by the following explicit formula:

(. &), k) = cosh(t A7) do(&, k) + A~/ sinh(t A ') ¢ (£, k). (5.2)

Here the functions cosh(x) and u~! sinh(x), with « an operator, are to be interpreted as
formal power series. Note that in Eq. (5.2) there are no problems with the square root of
the Laplacian, since the functions cosh(«) and u~ ! sinh(x) are both even. Also there are
no convergence problems, since the functions ¢p and ¢ are polynomials in the variable &'.

[

Define the operator A : K[E]? = K[ET? by A = pSD,o;l.Then in view of Lemma (5.2)
we have to show that A is surjective. We derive from Eq. (5.2) the explicit formula for the
operator A, valid for any pair (¢g, ¢1) € K[§ T

A(do, $1) = (k1 — (k- 3o, kK Agg — (K - 3:)@1). (5.3)

So we must now solve the following pair of equations:
kP — (k- 3)a =y, (5.4)
KAo — (k- 3)f =4. (5.5)

In Egs. (5.4) and (5.5) the pair (y, 8) is a given element of the space K[S]2 and the desired
solution is the pair (&, 8) which must be shown to lie in K[§ 12. Now it is clear from its
definition that K [£1 is closed under multiplication or division by «, so we may use Eq. (5.4)
to eliminate the function 8 from Eq. (5.5). This gives the following equation:

(A—(n-3))a =o0. (5.6)
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Here wehave putn-g; = niaé,withn,- = k" i;,aunit vectorando = k "2 (k8+(k-3)y) €

K[£]. Note that the desired result is false in two space-time dimensions since the left hand
side of Eq. (5.6) then vanishes identically, but the right-hand side need not vanish. So we
have reduced the problem to solving Eq. (5.6), given 0 € K|[£] such that the solution «
must also lie in the space K [£].

Proof of Proposition 5.1. We first prove the proposition for the special case with o of the
form

o= -n)PE*—E-nHv,. (5.7)

Here the numbers p, g and r are non-negative integers and the function v, € KI[&]
is homogeneous of degree 7 in the vector variable £ and obeys both of the differential
equations Av, = 0 and (n - 9¢)v, = 0. It is easy to solve Eq. (5.6) in this case explicitly: a
solution is just & = ((g + 1)(n + 2r + 2q — 2)) "' (¢* — (£ - n)*)o, as is easily checked,
by differentiation. This solution clearly lies in the space K[&¢] and is of the form (¢ - n)”t,
where 7 satisfies the equation (n - 9¢)7 = 0.

The rest of the proof consists in a demonstration that the general case can be reduced to
this special case by decomposing ¢ into a sum of appropriate terms and then using linearity
of the operator A. We first decompose ¢ as a sum of terms as follows:

00
-3
r=0

Each coefficient o, is required to obey the differential equation (n - 3¢ )o, = 0. Explicitly
one has the following formula for the quantity o,, valid for any non-negative integer r:

| —

!(E -n)’o;. (5.8)

~

= (=1 , ,
o=y (T!)—(s n)(n- ) o (5.9)

5=0

In particular it is clear from Eq. (5.9) that each function o, belongs to the space K [£]. Note
that the operator A — (n - 85)2 commutes with the multiplication operator (£ - n). Also if
a € K[&], then we also have (¢ - n)"«@ € K[£] for any non-negative integer r. So using the
linearity of Eq. (5.6) and the decomposition of Egs. (5.8) and (5.9) it suffices to prove the
solvability of Eq. (5.6) with both the functions ¢ and « lying in the kernel of the operator
n - d¢. Denote this kernel (a subspace of the space K[£]) by N[£].

Next we use a standard fact from tensor theory that any symmetric tensor may be de-
composed into trace-free parts. In the present language one has, for any 1 € N[£], a
decomposition:

27r!

— 1
t=) @ - E ). (5.10)
r=0

Here we have put £ = &;&'. In Eq. (5.10), the coefficients 7, must obey the differential
equation: (A — (n - 9)?) 7, = 0 and must lie in the space N[£]. Indeed for the case that
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is a homogeneous function of non-negative integral degree m in the vector variable £. each
function 7, may be given explicitly by the following formula:

o
(A =2nNT(—2r —ys) 5 .
y = E -—l" I . =3¢ I*\
i \.:0( I Ta—r G D€ TE A m k)

(5.1

with A = (n — 4 + 2m)/2. It is easily checked by differentiation that the function 7, of
Eq. (5.11) lies in the kernel of both the operators A — (n- ;) and - 3; as required. The proof
of compatibility of Egs. (5.10) and (5.11) follows immediately from Lemma 5.3 given below.

Since every T € K[£]is uniquely a sum of its homogeneous parts and each of its homoge-
neous parts lies also in the space K[£], Egs. (5.10) and (5.11) hold also for inhomogeneous
functions v € N[£], provided that Eq. (5.11) is rewritten as follows:

(=D* wl (e —s)

T, = >
Z(; 2+ Fu+r+ DI s+ D

(53 —(&- n)l)_\-(A - 35)2)r+,\‘1.

(5.12)

where i = (n — 4 + 2£48/)/2.

Combining these results and again using the linearity of Eq. (5.6), we see that it is
sufficient to prove the solvability of Eq. (5.6) with the function o being of the form given
in (5.7) above. This completes the proof of Proposition 5.1. 4

Note that since the above proof is compatible with homogeneity, it also shows that the
restriction of the map D to the subspace L, [x] has ranged the subspace L,,_[x], for every
positive integer m and that the restriction of D to the subspace of L [x] is surjective onto
the subspace L~ "[x].

Lemma 5.3. For j, a non-negative integer, define a function g;(z) of the complex variable
z as follows:

— 20z ~r—j)
4 , _ 13
g2 = ;( Ve T ore s DrG—r 50 (5-13)

Then the function g; vanishes identically unless j = 0 and the function g, is the constant
Sfunction with a value 1.

Proof. First, the case j = 0 is easily checked by inspection. So henceforth assume, for
convenience, that j is a fixed positive integer. From its definition it is clear that the function
g;(2) is a rational function of the variable  and that lim-_.  g;(z) = 0. Therefore, the
result will follow if it is proved that the function g;(z) is periodic. But one has the following
relations, using Eq. (5.13):

@—nI'(z—r—))

g'(&)_};{)( b’ Fz—r+DI'r+DI(G—-r+1
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_2":(#1), re—r—j)
£ T=r+ DI(OTG —r+ 1)

—Xj:(—l)’ Te-r—J)
& Fe—nre+DrG—r+1)

j—1
'@z—r—j—-1
+Z( by r(z—r)F(r DI —1)

Z( 1), j-Drz—r—j—1)
- F(z—r)F(r+l)F(]—r+ D

r —nNrz—-r—j-1
+Z( b F(z—r)F(r+1)F(]—r+l)

z-2r—DIl@~r—j—1
= E -1y =gi(z—1). 5.14
r=0( D eI +DIG—r+D &z =D G149

So the function g;(z), for j > 0 is periodic and therefore vanishes identically as required.
O

5.2. The Fourier transform operator F

Consider the (n — 1)-form Z defined on the null cone in momentum space defined by
the formula & = dk® dk% - .. dk% -1 = k, 404192 % -1 5 Restricted to the null cone one
has k.k? = k, dk® = 0, so the left-hand side of this equation is orthogonal to the null
vector k. The (n — 1)-form £ factorises according to the formula £ & = dk“w, where the
(n — 2)-form w is defined by the formula: k41 dk% ... dk-11 = kg €419 4n-1g_ Both
the forms = and w are closed: d& = do =0.

Given any A(x, k) € K{x], we consider its generalised Fourier transform F (1), which is
a space—time field given by the following formula, valid at any point x of M:

FO)(x) = f ¥ 3 (x, k) . (5.15)

The integration in Eq. (5.15) is to be carried out over the complete (past and future) null
cone, equipped with the induced orientation from its embedding in k-space, which in turn
is oriented by the volume form, €;,4,...a, dk%' dk? - - . dk. Note that by definition of the
space K [x] the convergence of the integral of Eq. (5.15) is automatic and the resulting field
F (1) is everywhere smooth on space-time.

The linear operator F : A — JF(}) is defined on K[x]} and we denote its range by I"[x].
Also denote by I, I'" and I''*[x] the images under the operator F of the spaces K, K
and K T[x}], respectively.
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It is clear that the space I'[x] consists of certain polynomials in the variable x“ with
coefficients in the space I, so to understand the range of the operator F it is sufficient to
identify the space I".

To this end, we first introduce for any « and B, solutions of the wave equation in space~
time the (n — 1)-form w (e, B) = a(xdB) — B(xda), where * is the Hodge star operator
on forms for the given Lorentzian metric. Since the wave equation for a field ¢ may be
written as d * (d¢) = 0, it is clear that the form w(a, 8) is closed. Define (e, B) to
be the integral of the form w(«, B), over a space-like hypersurface, oriented towards the
future, asymptotic to space-like infinity, for the given fields « and 8, which are required to
be such that the integral converges and is independent of the choice of that hypersurface.
Denote by W the space of all solutions of the scalar wave equation with initial data, on any
space-like hypersurface, asymptotic to space-like infinity, in the Schwarz class (the initial
data for a solution ¢ on a hypersurface is by definition the restriction of ¢ and * d¢ to that
hypersurface). Denote by M[x] the space of all polynomial solutions of the wave equation
and by M’[x] its dual space. Then for each ¢(x) € W, we obtain an element ((¢) of the
space M'[x], defined by the formula u(¢)(f) = 2(¢, f), for each f € M{x]. This gives
amoment map u : W — M’'[x], ¢ — u(¢). Then we have the following result.

Proposition 5.4. I" = Ker(u).

The proof of this result follows immediately from the Fourier inversion formula.

Note that the information in the moment map u is completely contained in the formal
power series defined by the formula: p(¢)(p,) = 2 (e'P«*" | ¢), where the exponential eirax’
is understood as a formal power series in the null covector p,. The quantity p(¢)(p,) is
then a formal power series whose coefficients are trace-free symmetric tensors, representing
the various moments of the field ¢. In terms of initial data, the quantity p(¢) represents
all moments of the data for the field ¢. In this language the space I" is the subspace of the
space W consisting of all fields ¢, for which p(¢) = 0.

Our final aim in this section is to determine the kernel of F and to prove the following
proposition.

Proposition 5.5. For A € K[x] we have

FO)(x) :/eikb"‘bk(x,k)E —0 forallx, (5.16)
e A(id + th) = 0. (5.17)

Here the scalar 7 is an indeterminate. Also in writing Eq. (5.17) it is to be understood that
in each term of the expression of the function A(x, k) as a polynomial in the variable x, the
expression is ordered by placing all the factors of the variable x to the left, before replacing
the variable x by the operator i9; + rk.

Before we proceed to the proof of the proposition we want to clarify the structure of
Eq. (5.17) with an example. In the case A € K[x], we have the expression A(x, k) =
x9xP B, +x%Ba + B, for some symmetric tensor B, vector B, and scalar 8, each of which
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depends only on the variable k. For this case Eq. (5.17) reads as follows:
0= (i3] + tk“)(ia,f + tk") Bap + (i8¢ + tk“)Ba + B. (5.18)

Note that the commutator (i3, +£k) (ia,f +tkby— (ia,i’ +1kb (19 +1k?) vanishes identically,
so there is no factor ordering problem. Expanding Eq. (5.18) in powers of the indeterminate
t, Eq. (5.18) is equivalent to the following three equations:

0 = k%° Bap, (5.19)
0= (3¢k” + k°80) Bup — 1k Ba, (5.20)
0= 388" Bap — 187 Ba — B- (5.21)

Note that Egs. (5.17)—(5.21) implicitly require that one extend the function A(x, k) off the
null cone of momentum space before writing these equations since the formulation of the
equations uses the full derivative operator d;. However, it must be possible to rewrite the
equations so that they are purely intrinsic to the null cone. In the case of Egs. (5.19)-(5.21),
one can see easily that these equations are equivalent to the following three equations:

0= k°k’ B, (5.22)
0= (L% + kL") Bap — 3p°k" Bup — ip k k® Ba, (5.23)
0= L°LBap — 3p"L? Bap — ip“kaL®By + 2p* p" Ba +ip kap" s

+(1/2)p° pa(iksB® + BY) — (p"ka)*B. (5.24)

Here the operator L? is defined for any fixed vector p¢ by the relation:
L% = 2ppkP37). (5.25)

It is clear from its definition that the operator L¢ is intrinsic to the null cone. Then
Eqgs. (5.22)—(5.24) hold for arbitrary vectors p®. Alternatively Eqgs. (5.23) and (5.24) can
be rewritten without using the vector p“ as follows:

0=(L.%" +k°L.")Bap — 3k?Bop — ikck®Ba, (5.26)
0=L“La)®Bub —3Lic"Bary — ik(cLay®Bp + 2Bea + ik(cBay
+48calikeB” + B57) — kckaB. (5.27)

Here we have introduced the intrinsic operator L%, given by the formula: L¢? = 2k'“ Bf I
in terms of which one has the relation L¢ = p;, L%¢. Note that provided that Eq. (5.22) also
holds, each of the Eqgs. (5.26) and (5.27) amounts to just one scalar equation, since one may
verify that the right-hand side of Eqgs. (5.26) and (5.27) are proportional to the quantities k.
and k.kq, respectively.

Proof of proposition 5.5. We shall prove the statement for A € K,,[x], for every non-
negative integer m by induction on the natural number m. First the required result holds for
m = 0, since in this case the function A(x, k) = B(k) for some function 8(k) € K. When
Eq. (5.16) holds, the integral [ elkax“ B(k) & gives the zero solution of the wave equation
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0O¢ = 0 and it is well known in this case that this entails that the function 8 must vanish
identically.

Next suppose the required result is true for all A € K, [x] for all m < s, for some
positive integer s. We prove the result for m = 5. So consider Eq. (5.16) with the function
Alx, k) € K [x] now a polynomial in the variable x of degree not more than s. Then we can
decompose the function A(x, k) as A(x, k) = a(x. k) + B(x. k), where a(x. k) € K"*'[x]
and B(x, k) € K;_([x].

Applying the wave operator to Eq. (5.16), we get the following equation:

0= /ei"h-"’ ik, 8 + D)A(x, k) 5. (5.28)

Since the function (2ik, 3% + O)A(x, k) € K,_[x], we get by the inductive hypothesis, the
equation:

0 = [(2ika0" 4+ DYA(x, k) ity 41k - (5.29)

Next take the partial derivative of Eq. (5.16) with respect to the variable x. We get the
following equation:

0= f ekox’ ik 4 3%) (e + B) E. (5.30)

Now we have «(x,k) = x?a.(x, k), where the function a®(x,k) = s '8%(x. k) €
K_1[x]. Then Eq. (5.30) may be rewritten, using an integration by parts as follows:

0= f ek’ (ik9xeq, + k9B + 8A) B
_ ikyx? (n:pla el spa a - kpx?: ape o
=1fe Qik“xa, +1kB+ 3N E + | e ix“ka, B
= f e (—2kle9¢la, + k9B + 392) & + x“ f e’ ke, 5. (531)
Now using Eq. (5.28), we have the following:
0= f el 2k 89 + DA & = f e* Qiska, + 2ik, 08 + 00 E. (5.32)
Hence one has the following equation:

el
/ e ik,

This equation is used to replace the last integral of Eq. (5.31). We then obtain

Q3]

1 I
= / eikp’ 2k, 3“8 + OX) E. (5.33)
s

a

0= / e’ (—2kl4 3N, + ik B+ 39N) — ;—(2ikaa”,3 + 00 5. (5.34)
A}

Now, by inspection, each term multiplying the quantity eiks” of Eq. (5.34) is of degree at
most s — 1 in the variable x. Therefore, we may invoke the inductive hypothesis again to
deduce
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a
0= [—2kl“a,f1ab +ikeB + 39N — —(2ik,0°B + m)]
2s x> (10 +1k)

a
= [2ik[“xb]ab k9B + 390 — - (2ik,8°8 + m)] . (5.35)
2s x> (0 +1k)

Now Egq. (5.28), when written out gives the equation:

[2ik,0° B 4+ Ol o +1k) = [—2ike 8% @) i +14)
= [=2iska0 T iy 10 (5.36)

Substituting Eq. (5.36) into the last part of Eq. (5.35) gives the following equation:

0 = [2ik"x®)ay, + ik®B + 39\ + ix®kp®Lvs (i3 11k
= [ik*xPap + kB + 8Ny (it +1k) = (iK% + ik B + 3 Al (it 42k)
= [i(k* — 10UV Dxrs (it +rk) = 1k [MLxrs it ok) - (5.37)

In the transition from the penultimate to the last line of Eq. (5.37), we have used the fact
that the terms arising from the commutator of the operator of multiplication by k¢ and the
operator id; + tk exactly cancel the derivative term, the quantity i3%). That this is correct
may be seen as follows. Consider the quantity [(k¢ — i) ((x? DPb)" F N ]x o, +2k)» for n
a non-negative integer, p a constant covector and for f € K. We then have the following
equation:

[(k* = i3*)((x" Pb)" £ (k) Lxs (it 40)
= [(x® pp)"k? £ (k) — inp® (x® pp)"~" £ (K))srs (it +10)
= (3] + th®) pp)"k* f (k) — [inp® (x® pp)" ™" F ()i g ek)
= k(80 + tk®) py)" f (k) + inp®((8F + tk®) pp)" ™! £ (k)
— inp®[(x® pp)* ™! £ () i Gitnt 1t
= KL py)" £ (KL xi (it 42k (5.38)

Since any polynomial A € K[x] may be written as a finite linear combination of terms of
the form (x? pp)" f (k), we have the relation [(k9 — P10 xs Gaptrky = kA v Gop 10
for any A € K|[x], as required.

Finally we remove the factor k¢ from Eq. (5.37) giving the required result and the
induction is complete. o

5.3. The general solution of 0" =0

In this section we provide the general solution of the equation 0™+ = 0 in the space
I"[x]. As the construction will show this is equivalent to finding the general solution subject
only to the condition that the zrm field O™~y lies in the space I" (i.e., has zero moment
map). We begin by proving that there is no loss of generality in restricting the domain of the
Fourier transform operator F from the space K [x] to its subspace L{x]. More specifically,
we have the following proposition.
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Proposition 5.6. For each A(x,k) € K[x] there exists a u(x, k) € L[x) such that
FR) = F(p).

Proof. For any . € K|[x], we have the decomposition, directly analogous to that of
Eq. (5.12) above:

(x- )’
A= Z S (5.39)

" :Z (=)*x2 T(w—=2r —s)(v = 2r) O+

5.40
22+ Fy—r4+DIs+1) ( )

s=0
Here we have put x> = x,x andv = (n—242x98,)/2. From Eq. (5.40), by differentiation,
it follows that the coefficients A, belong to the space L[x]. In particular, it follows that the
space K[x] is the sum of the space L[x] with the module generated over the ring K {x]
by the function x2. In view of this decomposition, to prove the required result it suffices
to show that for any function & € K,,[x] there exists a function 8 € K,,,[x] such that
F (xza) = F(B). Now we have the integration by parts identity, valid for any y, € K[x],
such that y,k“ = 0:

0= / 39 "y, 5. (5.41)

Rephrasing Eq. (5.41) in terms of the operator F, we have F(3%y, + ix“y,) = 0, valid for
any y, € K[x], suchthat y,k“ = 0. In particular, consider the case that y, = —ik; ! (kox, —
t.xPky, + kyx”1;), where 9 is a fixed unit vector and ko = k“t,. Then, it is clear that Vo €
K,n+1{x] and that y, satisfies the identity y,k¢ = 0, so one has F(—d%y,) = F(ix“y,).
But by contracting the vectors x“ and iy,, we also have the relation ix“y, = x2a, which
yields the relation F(x2a) = F(B), where B = —8%y,. Since from its definition it is clear
that the function 8 lies in the space K, 11[x], the proof is complete. Q

In view of this result we henceforth assume without loss of generality that F is defined
on the space L[x].

The wave operator of space—time, O acts naturally on the space I'[x] and one has the
relation, immediate from the definition of F in Eq. (5.15), valid for any X € L[x]:

OF (1) = 2i F(DA). (5.42)

We next wish to determine the kernel of the operator O acting on the space I'[x]. By
Eq. (5.16) above and using Eq. (5.42), we have OF (1) = 0, for A € L[x] if and only if the
function A(x, k) obeys the equation:

0= (DAY(19 + tk, k). (5.43)
Let the power series expansion of the function A € L[x] be given as follows:
1
Ax k)= S X Ry, (R). (5.44)

r=0
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In Eq. (5.44), each coefficient tensor A, 4,...q, belongs to the space K and is completely sym-
metric and trace-free. Writing out Eq. (5.43) in terms of this expansion gives the following
system of equations, one for each positive integer g:

o]

1
0=>" EA,,_,,(k). (5.45)

p=0

Here the quantity A, , is by definition 4, , = P ... gokb -~-kb4Aa,...apb|...bq. Note
that there are no factor ordering problems for the quantity A, 4, since the tensor coefficients
are all trace-free. Now expanding in powers of the indeterminate ¢ we have the identity,
derived from Eq. (5.44):

oo
14
A{d +th, k) = Z Fxp,q(k). (5.46)
o=y p'a!

Comparing Eqgs. (5.46) and (5.45), we see that if we define u(x, k) = A(x, k) — A(19, k),
then we have the relation:

0= p@d +tk, k). (5.47)

Note that 4 € L[x], so from Eq. (5.47), one has u € ker(F). This gives the relation
F(A) = F(v), where v = A(i9, k) € Lg[x]. So we have shown that if OF (1) = 0, then
A = 0mod (ker(F) + Lo[x]). Conversely, if A € ker(F) 4+ Lg[x], then it is clear from
Eq. (5.42) that OF (1) = 0. So we have proved the relation ker(O.F) = ker(F) + Lo[x].
Rephrasing we have proved the relation ker(0) = F(Lg[x]).

This generalises immediately to our first main result.

Theorem 5.7. For any integer m > 0 and any space—time dimension n > 2, the kernel of
the operator O™ when acting on I'[x] is given by the relation

ker(O™F) = ker(F) + Lp—1[x]. (5.48)
Equivalently this may be stated as

ker(O™) = F(Ly—1[x]). (5.49)

Proof. The required result has just been proved in the case m = 1, so henceforth assume
m to be a fixed integer greater than 1. Suppose that @ € ker(00™) and @ = F(¢), for some
¢ € L[x]. Then 0" '® € ker(O), so we have 0" ~'¢ = F(a), for some o € Lo[x].
By Proposition 5.1 the operator D is surjective as a linear map from the space L[x] to the
space L;_[x], for any positive integer s. It immediately follows that the operator D" is
also surjective as a linear map from the space L;[x] to the space L,_,[x], for any positive
integers r and s, with s not less than r. Therefore we may puta(x, k) = (2iD)" ! B(x, k) for
some B € L,,_[x]. Then we have 0"~ !¢ = F(a) = F((2iD)""'8) = O"" 1 (F(B)).
So we have @ — F(B8) € ker(0” ') and the required result now follows immediately by
induction. a
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We have shown that the general solution of the equation 0"*+!¢ = 0 in the space I'[x]
is given by an integral formula

n

d)(X) - /eikhxh [}\(k) + Z }"a|~~-u,' (k)-xal o .Xai

i=1

t

(5.50)

where the polynomial inside the integral satisfies the wave equation. The solutions of this
type are automatically C*. So with this formula we cannot find functions which are merely
C* differentiable. However, this class of solutions is sufficient for our purposes. More general
solutions can be obtained using functional analytic methods by starting with this integral
formula on an appropriate function space and then taking limits. We will not pursue this here.

5.4. Spinor momentum space

We now specialise to the case of four dimensions and introduce spinor variables. A
future pointing null momentum covector k, may be factorised as k, = kk 4/, for k4 a two
component spinor, with complex conjugate spinor k 4-. More precisely, we have a surjective
map from the momentum spin space to the future null cone of momentum space, which
maps the spinor k4 to the null vector k 4k 4-. The inverse image of the vector k, = kak,
is the circle of spinors wks (with @« € C and |¢} = 1), for k, non-zero, and is the zero
spinor only, when k, = 0. We pull back our previous constructions along this surjection.
The pullback of the ring K * is then the ring of functions f(k4, k 4-), which are everywhere
smooth and vanish to all orders at the origin, decay faster than any power at infinity and
which obey the differential equation (k43;' — k4:3{") f = 0. We shall need to multiply by
components of the spinors k4 and k 4, so it is natural to enlarge the ring K in the spinor
case to the ring K which is by definition the ring of all functions f(k4, k'), such that f
has a decomposition as an infinite sum: f = Y’ __ f,, with only a finite number of the
functions f. non-zero and such that for each integer » we have:

(i) f, is globally defined and smooth on the momentum spin space;

(i) limy_ o fr(e'®kg, e’ k) = 0, for all @ € C, such that R(«) is non-zero; here the
limit is taken with ¢ real and the limit must be uniform on compact subsets of the
momentumn spin space;

(i) (kadl — ka0 frGkas kar) = rfr(ka ka). R

For each integer s, denote by K* the subspace of K consisting of all f € K with f,

vanishing for all r different from s. Then the pullback of the ring K * is the ring K" and

one has K"K included in K”%4, for all integers p and g. In particular, K" is a subring of

K and every space K/ is a K%-module. Denote by K /[x] the subspace of K [x] consisting

of all polynomials in x with coefficients in the space K/. Denote by L[x] the subspace of

K [x] annihilated by the wave operator O and by L’[x] the intersection of the spaces K Ix]

and z[x]. Denote by K [r] the space of all polynomials in the spinor variables 7 4 and 7 4-

with coefficients in the ring K.For p and g any non-negative integers and for j any integer,

denote by K pglm] and K ,j,.q[n] the spaces of all polynomials in the spinor variables 7 4

and 4, homogeneous of degrees (p, ¢) in the pair (74, 7 4'), with coefficients taken from
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the spaces K and K/ , respectively. For every element f (x) of the space z[x] and g(m) of
the space K[r], we have unique expansions of the following form:

o0
ALA! A AL A Al
FQY=Y ) Faragen,apayaxthixtihe e, (5.51)
r=0
o0
! ! ’
8= D 8ararnpayapa, 7w ettt (5.52)
p.q=0

In Egs. (5.51) ang (5.52), the coefficient spinors fAlAz--»ArA’,AgmA’, and gA1A2-~-A,,/iiA’2-~~A;
lie in the space K and are completely symmetric in all indices. Denote by E7 : L[x] —
K] the evaluation operator which substitutes the spinor 7474’ for x¢ in any element of
L[x]. Then it is clear that the map E7 is an isomorphism of the space Z[x], with range the
subspace of K [7] consisting of all polynomials g() € K [7r], which obey the differential
equation (nAB,/,‘ — nAraf,‘/)g(n) =0.

To proceed we need the spinor analogues of our previous technical results. First we need
the analogue of the surjectivity of the operator D of Proposition 5.1.

Proposition 5.8. The operators k0%, k437 : L - Land kAa,f,kA/Bﬁ/ - K > K are
surjective.

Proof. Using the isomorphism E7 it is easily seen that it is sufficient to prove surjectivity
for the operators k4. and k4’ 8;;‘,. Further by formal conjugation the proof of surjectivity
for the operator k43 will yield a proof of surjectivity for the operator kA/B;;". So we
just need to prove that the operator k437 is surjective, when acting on the space K [7].
Using the expansion of Eq. (5.52), we reduce to proving that given a totally symmetric
Spinor gp..cp...c' € I?, there exists a totally symmetric spinor f4p..cp..c' € f, such
that k4 fog..c..c' = gp..cp..c’. By taking components with a fixed primed spinor
basis, we reduce further to the case that the spinor gg...cp'...c’ has only unprimed indices.
By contracting throughout with a spinor variable 74, we reduce to solve the differential
equation k4 3,’;‘ f=g,giveng € K [7], such that the solution f lies in the space K [7] and
both f and g are independent of the variable 7 4.

Let 1% denote a fixed unit time-like vector and putzn 4 = 1,k Note that n4k* = 1,k k*
is always a positive real number unless k4 = 0. Then one has the following decomposition
of the function g:

00 —1)P
e= Y E tunty(npn®yig,,. (5.53)
= plg!

This decomposition follows from the expression of the spinor 7 4 in terms of the spinor basis
naandka: s = (tkcke) "V (—kgnBna +ngnBky). Then by the binomial theorem, we
have the following explicit formula for the quantities g, ,:

1
84 = Gerorgyrra ((1482)" (k837 gl (5.54)
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It is clear from Eq. (5.54) that each coefficient g, , lies in the ring K, so by linearity it
suffices to prove the required result for the case g = (kaw?)”(ngn )9, with p and ¢
non-negative integers. But then we have the following relation:

kaph [(kw")ﬂmgnﬂ)q“
i (q + Ditkcke:

] = (kart™)(ngr B4, (5.55)

So f = ((g+ Dtkcke) ™ (kam )P (ng B)4T) provides a solution in this case. Since it is
clear that this function f belongs to the space K [7] and is independent of the variable 7 4,

the proof is complete. Note that by tracking homogeneities through the proof we ﬁnd that
if g belongs to the space K 7.4» then we may take the solution f to lie in the space K/

P-H q°
]

Second we need to analyse the kernel of the pullback of the Fourier transform operator
F. This Fourier transform, still called F, is defined now as follows, when acting on any
¢ € Kix]:

F(¢) = fe“‘uf"¢(x“, ki, ka)$2. (5.56)

Here one has 2 = ¢48¢A'8 dk 4 dkg dk 4 dkp and the integral is carried out over all of
spin space. It is easily shown that the operator F maps K isomorphically onto I"* (the
range of F of Section 5.2 acting on the space K *) and annihilates all the spaces K/, for j
non-zero. Furthermore, acting on the space K [x] the operator F agrees with the pullback
of our original Fourier transform operator (restricted to the domain K *[x]), up to a fixed
non-zero multiplicative constant.

Proposition 5.9. For each ¢ € LO[x):
pekerF e ¢p(x% kaka) = B +ixka)pa + B3f +ix%ka)y, (557

with¢s € L'[x]and ¢4 € L™[x] obeying the spinor zrm-field equations: 3“¢4 = 0 and
%¢ 4 = 0. If ¢ has degree at most m in x, then ¢ 4 and ¢ - may be taken to have degree
atmostm — lin x.

Proof. The “if”-part of this result is a trivial integration by parts, so we assume that 7 (¢)
vanishes and we establish the formula of Eq. (5.57) for the function ¢. First if ¢ is inde-
pendent of the variable x, then F(¢) = 0 entails that ¢ = 0, so the result holds if we take
¢4 = ¢4 = 0. So now we assume that the required resuit is true for ¢ any polynomial of
degree at most m — | and take ¢ to have degree at most m. Then applying the wave operator
to the equation F(¢) = 0, we obtain the equation F(k,09¢) = 0, so by the inductive
assumption, we have the relation:

ko899 = (3 +ix%ka)a + B +ix%ka)Yar. (5.58)

Here the quantities yr4 € L'[x]and ¥4 € L '[x] are polynomials in x of degree at most
m — 2, belong to the spaces L'[x] and L™'[x] and obey the field equations 3¢y 4 = 0 and
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3%y 4 = 0, respectively. Write ¢ = o + 8, where o is homogeneous of degree exactly m
and B is of degree at most m — 1 in the variable x. Similarly decompose the fields ¥4 and
Ya asYa = —ipa + 04 and Y40 = —ipar + o4/, where p4 and p4 - are homogeneous of
degree m — 2, whereas o4 and o4 have degree at most m — 3. Then the terms of highest
degree in the variable x of Eq. (5.58) give the following equation:

ka0% = x% 4 pa + x%kapy. (5.59)

Note that by the inductive hypothesis, the functions p4 € L'[x]and py € L™ '[x] obey
the zrm field equations: 3%p4 = 0 and 3% p4 = 0. Note that the quantities o, p and p’ are
respectively of homogeneity (m, m), (m — 1,m — 2) and (m — 2, m — 1) in the variables
74 and 74, respectively. Now put x4 = 7A7A in Eq. (5.59). We obtain the equation:

k320X o = mkam® p + kamtp)). (5.60)

Here we have put 0 = E7(a) € K3 ,[7], p = ET(npa) € Krln—l,m—2[7[] and p’ =

Ef(w*pa) € K,;'5 . [n]. Next write p = m~'k87 and p' = m~ kg3 ¢/, for
0

0 ’
some T € Km.m-z[”] and 7’ € K,y o m

[7]. This we can do by the surjectivity of the
operator k43 proved above. Then Eq. (5.60) may be rewritten as follows:

0=k,(020%c — oAt — w402’ 7"). (5.61)

Now suppose that the quantity v* € K[r] obeys the equation k,v* = 0. We may expand
the vector v in terms of the spinors k*, n and their conjugates k%" and n*" as follows:

v = kAU + k408 V + W+ ntn X, (5.62)
(v¥nanar) (Vnkyr)

U=s ————, =, 5.63

([CkaC )2 ([CkaC )2 ( )
(v%%kany) (vkaka’)

= _vrana) oy U RARA) 5.64

([(‘kaC )2 ([CkaC )2 ( )

It is clear that each of the quantities U, V, W and X lies in the space K [7]. When we
have the relation vk, = 0, this implies that the quantity X vanishes. This in turn entails
that the quantity v% may be expressed as v* = k%vA" + k4'vA, for some v4 € K[r]
and v’ € I?[n]: indeed one may take vA = Uk?* + Wn? and v = Va4’ Note that if
v® € K} 4[], thenby Eq. (5.64) the quantities v and v*’ may be taken to lie in the spaces
K g;l [7]and K ;,;l [1, respectively.

Applying this result to Eq. (5.61), we obtain

3204 6 = 7ol + 2498t — m2Av — mPA VA, (5.65)

for some v* € K _, ,._,[7] and v e K,;llqm_l[n]. Contracting Eq. (5.65) through

with the spinors 4 and 74 gives the following equation:

A

o =kAmav + kY 0. (5.66)
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Here we have put v = v

Eq. (5.66) in terms of the variable x, we find

1 — A -1
€K, ,_Irland V' = mpv” € K,

1—1.m

[7]. Rewriting

a=x"kaay +kaaq). (5.67)

Here the fields a4 (x) and a4+ (x) are determined by the formulas E7 (@ =m"! Bj:v and
E7(@*) = m~'84'v'. Also we have a4(x) € L'[x] and a4'(x) € L™![x] and both the
spinor fields o 4 [x] and & 4-[x] obey the zrm field equations and are homogeneous of degree
m — 1 in the variable x. By Eq. (5.67), we have the following relation, using an integration
by parts:

0=F(®) = Fla +p) = F(x“(kaaa + kyaa) + ) (5.68)
= FGaf ax +idfas + B) (5.69)

By the inductive hypothesis, we obtain from Eq. (5.69) the relation:
0 aq +i0fas + B = B +ixkydwa + B + ixkawy . (5.70)

Here the fields w4 € L'[x] and w4 € L~![x] obey the spinor zrm field equations and are
polynomials of degree at most m — 2 in the variable x. Combining Eqs. (5.67) and (5.70),
we get

¢ =a+ B=xkaasy +kgas)+ (a,\A +ix%k s )wa + (a,\A,
+ix%pwa — i3 aqy + 8 ay)
=@ + ix%ka)pa + O +ix'ka)pa- (5.71)

In Eq. (5.71) we have put ¢4 = w4 — ics and ¢4 = w4 — i 4. Since it is clear that the
fields ¢4 and ¢ 4+ have all the requisite properties, we have proved the validity of Eq. (5.57)
for any field ¢ (x) € L°[x] of degree at most m in the variable x. Therefore by induction
we have the validity of Eq. (5.57) in general and the proof is complete. a

5.5. The general solution of M'®d =0

If we wish to construct a space—time field from elements of K/ with j non-zero, we
first need to multiply by spinors k4 or k4 as appropriate to map the element to an (in-
dexed) element of K, before applying the Fourier transform operator F. The result is
a spinor indexed field on space-time. For example consider the standard zrm equation
34 P 4 5...cp(x) = 0 for a totally symmetric spinor field ® 4 5...c p(x) of r indices. Taking
another derivative and contracting, we immediately find that the field @ 45..cp(x) obeys
the wave equation O® 45...cp (x) = 0. Therefore by Theorem 5.7, we may write its general
solution (after pulling back to the momentum spin space) in the space I'* , as follows:

DPap.cplx) = feik“’xuaAB...C[_)(kE,kE/) 2. (5.72)

Here the Fourier coefficients a 4 5...c p lie in the space K. Applying the field equation we get
the equation kAasp..cp = 0, whence it follows that aap..cp ke, kg') = kakpg - -kckp
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¢ kg, kg), for some function ¢(kg,kr) € K~—J. So now Eq. (5.72) reads as
follows:

®ap..colx) = / e e kakp - kckpd kg, kp) 2. (5.73)

Next we shall derive explicitly the solution by Fourier transform of the equation 344’
o8 AB. CC) = 0 in the special case of one primed index (m = 1) and then later generalise
to arbitrary positive m. We know that the field ® 4 g p- lies in the kernel of the operator O°
by Proposition 2.1, so by Theorem 5.7 it admits a Fourier representation of the following

form:
(X)) = / e (apx’ + a)R2. (5.74)

Here the variable X is an abbreviation: X = (x%, 74, w4) and we have put @(X) =
Dapp (X)nint 78, The Fourier coefficients ap and a depend on the spinors k4 and w4
and their conjugates, but not on the variable x°. Defining the operator M’ = nA’a;,‘ d, the
field equation may be written as M'® = 0. This operator agrees with the operator M’
defined in Section 2 in its action on the spinor indexed coefficients of @. Applying the field
equation, we get the following equation:

0 = F(w? 38 (iky + p)(acx + a)) = F((n® 08)(ikpacx® + ikpa + ap)). (5.75)
Using Eq. (5.57) above, we deduce the following equation from Eq. (5.75):
8 38 (ikpacx® + ikpa + ap) = (O + ixkadas + B + ix%kan.  (5.76)

Here the quantities a4 and a 4 are independent of the variable x. Equating the coefficients
of x in Eq. (5.76), we get

kp®kpdPa. = kerac + keac. (5.77)

Eq. (5.77) gives immediately the equation kpd2a‘k. = 0, which is solved by a‘k, =
(7 8kp)2a, for some a, independent of the variable 7 4. This gives the relation: . =
kpaBracBe + keyer + kcryc, for some B¢r, yor and yc, with o = kA/ﬁA/. After an
integration by parts applied to Eq. (5.74), the terms involving y¢ and y¢ may be eliminated,
s0 one may just take a, = kg B¢ Bc, without loss of generality.

Eq. (5.76) now becomes

(w®'08) kok prr Prrc Berx® + ikpa + kpr P p By
=ik ® kpaPkeBoxt +ikgn®kpdBa + 3kpnPr® By

=07 +ix%a)oa + B +ix%ka)au. (5.78)
This gives the relation kqag + kpay = kgn?® anDkAﬁA/ So we have ay = kg
b 4 kD nDﬁA/ + 8k4r and @y = —k448 for some 8. But then the contribution of the terms

involving the quantlty 3 to the right-hand side of Eq. (5.78) is just (3 ka — Bk 'ka)s =
(ka ak —k A/Bk '8, which vanishes, since by tracking homogeneities we find that § lies in
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the space K. Therefore without loss of generality, we may take § = 0. Then if we put
x* = 0in Eq. (5.78), we obtain the relation:

kg ®kpoBa + 2kpr P By = kg P kpa ol Bar. (5.79)

Next write 4 = ﬁA'B'T[B, + w4 B, where B4/p is symmetric and both 845 and B are
independent of the variables w4 and w4 . Then putting 74 = k4 in Eq. (5.79) gives the
relation: ,BArBrkA/kB/ = 0, which entails that 8450 = k46p, for some spinor §5-. Then
Ba = kA’5B’JTB, + 7 4r€, for some scalar €. The term in B84 proportional to k4 may be
eliminated by an integration by parts, applied to Eq. (5.74), so we may take without loss of
generality: 84 = mq€. Then Eq. (5.79) reduces to the equation:

ikpafa = kpr P ol e. (5.80)

Next we put a = a8, for some symmetric spinor a4, independent of the spinor

4. Putting w4 = k4 in Eq. (5.80) gives the relation: asgk®k® =0,s0asp = kaeg, for
some spinor €g. Also put eg = €p B/JTB/, where ¢, is independent of the spinors w4 and
7 4. Then Eq. (5.80) reduces to the following equation:

espk? =il e. (5.81)

Then we have the relation apx’ +a = kpr 2 (x’ngmge + eppmBxB’). Summarising we
have found that the general solution by Fourier transform of the equation AN <;D§ bf =0is
given by the formula:

P(X) = feik““(‘anB(x"ncncre +econ . (5.82)

Here the quantities € and € g- depend only on the momentum spinors k 4 and k 4+ and are
subject to Eq. (5.81). Next Eq. (5.81) may be solved by writing € = —i¢AkA, for some ¢ 4.
Then one has €4 = 8,?/¢A - kAd)A', for some ¢A/. The quantities ¢p and ¢A/ are freely
specifiable. Writing out Eq. (5.82) in terms of the spinors ¢4 and ¢4/, we get the following
formula:

P(X) = f eex kg B (—ix“memeppk® + BF ¢€ — ko memey 2. (5.83)

Finally we may integrate by parts in Eq. (5.83) to eliminate the derivative term. This
gives the equation:

qb(X)=fei“u«“‘anB(—ixCC'nCnka”’ +ixCheppn e — ke w2
= f e (kg 82 (ixC Cpemer + ¢C me) 2. (5.84)
Note that there is gauge freedom in the pair of Fourier coefficients ¢ = (¢a. ¢A(): the

quantity € of Eq. (5.81) is unchanged under the transformation ¢4 > ¢4 +kay. Then Fhe
quantity €*4” is also unchanged provided we make the transformation ¢ > ¢* + 8/ y.
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So the complete gauge transformation is ¢y — ¢ + Ky, Where K|, is the operator pair:
Ko = (ka, 3f).
Note that Eq. (5.84) may be rewritten in the following compact form:

P(X) = / e (kpm8)? 2%, 2. (5.85)

Here Z* is the twistor Z* = (ix®m,4/, m4'). This result may be generalised immediately:

Theorem 5.10. The integral
D(X) = f ek’ e (2% kg ®)2 (5.86)

is a solution of the equation M'® = 0 for every ¢(Z*, anB) € I?[Z, kam?). Con-
versely, let @ € I't[x, m, ] be a polynomial homogeneous of degree (p, q) in the spinors
(m, ) with p > q. If & satisfies the equation M'® = 0 then it has the representation
(5.86) for some ¢(Z, kan?) € I?[Z, kam?) homogeneous of degree (q, p) in the vari-
ables (Z, kAnA).

The restriction p > g is necessary, because the theorem is false when p = g, or when
P < g, because in each of these cases the equation M’® = 0 possesses a gauge freedom: if
P = (mamad®)? p, where p is a polynomial homogeneous of degree (0, ¢) in the variables
(ra, m4), then the equation nA/B;‘ 3,9 = 0 is automatically obeyed, for such arbitrary
functions p, as is checked easily, since the operators 74/ 48 and M’ commute and since
p is annihilated by the operator M’. Because of this gauge freedom, no Fourier transform
formula based on the null cone of momentum space is possible, unless one first fixes the
gauge freedom in some way.

Proof. By straightforward differentiation we see immediately that the function & obeys the
equation 74'948,® = 0.

Conversely we prove next that the general solution of the equation M'® = 0 may be
put in the form of Eq. (5.86). The proof is by induction on the integer g. First consider the
case ¢ = 0. Then the field @ (X) is independent of the variable 7 4, so the field equation
M'® = 0 is equivalent to the equation 3;‘ 9,9 = 0, which is just the standard zrm field
equation for a totally symmetric spinor field with p > 0 indices. By Eq. (5.73) the solution
may be written as follows:

D (X) = F(kgnB)P¢). (5.87)

Here the function ¢ is independent of the variables (x¢, 4, 7 4/). Therefore the required
result holds in this case, with the function f(Z“) independent of the variable Z.

Next consider the case g > 0. Let @ (X) of homogeneity (p, g) satisfy the field equation
M'® = 0 and put ¥ (X) = 3. 928,®. Then ¥ (X) is of homogeneity (p — 1, — 1) so,
since g — 1 is non-negative and since p — 1 > g — 1, we may use the inductive hypothesis



J. Frauendiener, G.A.J. Sparling /Journal of Geometry and Physics 30 (1999) 54—101 89

and write the field ¥ (X) as follows: ¥ = F(ik,x% (kg #)P~ 1y (Z%)). Define a field F(X)
by the following formula:

F(X) = F(kgr®)P f(2%)). (5.88)

We wish to choose the function f(Z%) such that the field F(X) is of homogeneity (p, q)
and obeys the equation: ¥ = 3239, F. Applying the differential operator 8 923, to
Eq. (5.88), we get

389249, F(X) = F((3X 323, + ika)) (kg BY £(Z%))
= F(32 810, (kpnB)? F(Z)) = —pF((kgm )" =102 k43, f(Z*))
= iF (kg B)P=' 92 ik a(82)" £(Z9))
=ip(q + DF (kg %Y~ ka(32)" f(Z2)). (5.89)

Therefore, we have a solution to the equation (8,’,‘,8,’[1 d,)F = W provided that the function
f(Z%) obeys the equation k4 (37)" f(Z%) = (ip(g + 1)) "' g(Z%).

Having found the function F(X), we write @(X) = F(X) + g(X), for some func-
tion g(X). Then the function g(X) must obey both the equations (31 323,)g = 0 and
er’a,;‘ d,g = 0. Combining these equations, we get the single equation: 3:19,¢ = 0. By
contracting this equation on the left with the operator 753 ? A’ we see that the function
g(X) lies in the kernel of the operator O whence it admits a representation analogous to
that of Eq. (5.73): g(X) = F(y), for some function y(kx, ka’, 7g, ). Then the field
equation 87’? d,8 = 0 gives the equation k4 87’? y = 0,50y = (kqam™)"n, for some function
nika, ks, 7). Putting ¢(Z%) = f(Z*) + n now gives the desired representation of the
function @ and the complete proof follows by induction. )

If we apply this theorem to our special case we obtain the explicit representation given
in the following:

Corollary 5.11. For any non-negative integer m, the integral
Ypl = / ef e kARE kP + b xE ey
+¢p.pxtpxf oy (5.90)

is a positive frequency solution of the equation 9 4 A/i,[/g,’_g_ CC) = 0. Conversely, every such
solution is represented in the above form.

6. Twistor solution of the field equations

Let us first introduce the structures which are relevant for the purposes of this work.
For more details see [13] and references therein. Twistor space T is by definition a four-
dimensional complex affine space. Denote by V the underlying vector space of T. At any
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z € T, denote by 6(z) the natural isomorphism of the tangent space of T at z with the
vector space V and denote by 6 the V-valued one form on T whose value at any z € T
is 6(z). It is clear that the one form 6 is exact: & = d¢. Here the quantity { is a V
valued function globally defined on T. The function ¢ is unique up to the transformation:
¢ — ¢ +a, with « constant. The function ¢ serves as a vector valued global coordinate for
the space T.

Naturally associated to the affine space T is the space S(T) which is the space of all two-
dimensional affine subspaces of the space T. Naturally associated to the vector space V is
the space M (T) which is the space of all two-dimensional subspaces of the space V. There
is a natural surjection, y : S(T) — M(T), which takes each element of S(T) to its tangent
space. The map p renders S(T) as a two-dimensional fibre bundle over M (T) with fibre as
a two-dimensional affine space. The space M(T) is provided with a natural holomorphic
conformal structure, which is such that x, y € M(T) are null related if and only if the
intersection x Ny is non-trivial. It is isomorphic to (compactified, complexified) Minkowski
space and the space S(T) can be regarded in a natural way as the affine (unprimed) spin
bundle over the space M (T). The primed cospin bundle S'(T) is by definition the space
of all pairs (X, z) € S(T) x V with z tangent to X. It is a two-dimensional vector bundle
over the space S(T). Denote by L’(T) the line bundle Q2(S'(T)) over S(T). Note that the
restriction of the form 62 to any X € S(T) naturally takes values in the line bundle L'(T)
at X, pulled back to the space X.

Let f denote a holomorphic function defined on some domain U in T. Then the form f6
is a holomorphic two-form on T with values in £2%(V). For suitable X € S(T), consider
the following contour integral:

S(HX) = f f6°. (6.1)

y(X)

Here y(X) is a closed oriented contour of two real dimensions, which is required to lie in
the intersection of the space X with the domain of the function f and to vary smoothly with
X. It is clear that the quantity S(f) represents a holomorphic section of the line bundle
L'(T) over its domain of definition, M(U) (this domain is an open subset of the space
of subspaces X, for which the intersection with the open subset U has non-trivial second
homology). By definition, if the integration contours are regarded as given, the section S( f)
is the (unprimed) spinor field associated to the twistor function f.

More generally let F(z, ¢) denote a holomorphic function on the tangent bundle of the
domain U with (z, {) € U x V. Then consider the following contour integral for (X, z) €
§'(T), such that X € M(U):

S(F)(X,z) = f F(z,0)8%. (6.2)
Y0

This defines a function S(F) on S’(T) taking values in the line bundle L'(T) (pulled back
to the space S'(T)).
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Lemma 6.1. The contour integrals of Eqs. (6.1) and (6.2) give coordinate independent
formulations of solutions of the zrm equation and the equation M'®(x%, w2 m4) =
n4 823, D(x, A, my) =0, respectively.

Proof. We use lower case greek indices for tensors based on the vector space V and introduce
the standard representation £% = (¢4, ¢4/) of a twistor ¢ in terms of an unprimed spinor
¢ and a primed cospinor ¢4/. A point X, not at infinity, of the space S(T) is labelled by
the pair (x“, 7). The two-dimensional affine subspace of T corresponding to X is the set
of all twistors £*(p4’) of the form :

t%(pa) = (x* pa + 74, pa) = X pa + 119, (6.3)

for arbitrary cospinors p4. Defining X*8" = (ix48', 8/‘3:), % = (74, 0) and X** =
X" xBD'e. . we note that the restriction of the one-form 6% to the space X is given
by the formula: X*(8%) = X¢ 8’ dpp and therefore the restriction of the form 8%68 to the
space X is just X*(0%90#) = X% d?p, with d?p = %EA’B, dpar dppg'. Therefore, the field
S(fH(X) of Eq. (6.1) factorises as S f)(x€, 76 = XBy(f)(x¢, n€), where we have
the following explicit formulas for the function ¢ (f)(x%, 74):

P(H(x, ) = / FXF pp + 1) d%p

p(X)

= / F@x*® pp + 7, pa) dp. (6.4)
p(X)
In Eq. (6.4) the two-dimensional contour p(X) lies in the primed spin space of the variable
o4’ and varies smoothly with X, avoiding the singularities of the integrand. Differentiating
Eq. (6.4), we immediately obtain the zrm field equations in the form 32 ,0(f) =0.
Similarly, the integral of Eq. (6.2) gives rise to a field @ (F)(x“, A, m4r) given by the
following formula:

O(F)(x*, 7t 7p) = / F(X B rp: X8 pp + 1) d%p
p(X)
- / Fx*8 g, wpr ix®® pp + 74, par)y dp. (6.5)
p(X)

Differentiation of Eq. (6.5) immediately gives the field equation M’® (F) = 0, as required.
0O

Note that, depending on the properties of the twistor functions f or F, the fields ¢(f)
and @ (F) may contain many different helicities or irreducible spinor parts.

Denote by O{p, q) the sheaf of germs of holomorphic sections of rank p totally symmetric
covariant tensors on projective twistor space P(V), taking values in the sheaf O(q) (the
sheaf of germs of holomorphic functions 4(Z) homogeneous of degree g in the variable ¢).
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Such a section is described non-projectively by a tensor with p indices: foa;-a,(§*)0% ®
6*2®---®6%, suchthat fy,4,..q, is completely symmetric, holomorphic, homogeneous of
integral degree g — p in the variable {* and such that 0 = ¢! fy,4,.¢, (§*). Our main result
is that the sheaf cohomology group H! (U, O(p,2p—1)),forpa positive integer describes
the general analytic solution to our higher spin equations (the spin is p + %), for suitable
domains U in twistor space. This restriction to analytic solutions is not mandatory: by
replacing ordinary cohomology by C.R. cohomology one can obtain non-analytic solutions
from the twistor theory. We do not discuss this further here.

6.1. Twistor description for the spin ( % ) case

As before we begin with the spin (%) case and treat the general case later. In this case the
object of study is the group H' (U, O(1, 1)). We shall use the contour integral description to
get at the results. Each calculation that we do then corresponds, according to well-established
procedures, to an appropriate calculation using sheaf cohomology as described for example
in the books of Penrose and Rindler. For H!(U, O(1, 1)) we use functions f,(¢), which
are homogeneous of degree zero in the variable ¢. For a function g(¢), homogeneous of
degree zero, the corresponding space~time field gpc is of spin 1 and is given by a contour
integral according to the standard formula of Hughston:

gse(x) = / 959c8x*® oy, pa)eC dpc. 6.6)
y(x)

Here the operator dg denotes the partial derivative with respect to the unprimed spinor part
8 of the twistor variable ;2. Also the one-dimensional contour y (x) is closed, avoids the
singularities of the integrand and varies smoothly with the point x.

Next we need the explicit action of the twistor operator £* on the field g gc. Multiplication
of g by ¢ gives a function homogeneous of degree 1 for which the corresponding field ¢ g
is of spin % and is given by the following formulas:

€)5cpxh) = / d8dcdp(t*g)ixE" prr, pgNe® dpg
yx)
— [ Go50ca0gxE pr o)
y(x)
+X°% ppdgdcipgx® pp, pe)p® dog
=38%gcp —iX*® dp pgcop. (6.7)
In Eq. (6.7), the twistor 6§ = (8 82, 0). Also we have used the fact that inside the twistor

integral the operator d; is represented by the operator ipp: 9. Applying these results to the
indexed function fg(¢), allowing for the extra index, Egs. (6.6) and (6.7) become
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$pep(x) = f 3cdp f3ix*® ppr. payocr dpC . (6.8)
yx)
€DV gcpe =38EdppE —iX*C dercdppE. (6.9)

If we now impose the condition ¢¢ f, = 0, we see that the trace over the twistor indices
of Eq. (6.9) must vanish. From the right-hand side of Eq. (6.9) this gives the following
condition:

0=3¢cnr — X dccdunr = 3¢cnE + X dccrdans — iaA'Cd’g/E
=3¢cpE - 20cpE + dcc (A dape — i¢[C>;5)

=vYcpr — 2ec(DYE) — iaA'cllfS;g, (6.10)

with ¢upc = (Pasc, dpr)s danc = Yasc + eas¥e) and Y, = opy +ix CocpE.
where the spinors ¢g/E, Yapc and ¥ DA/E are completely symmetric.

Eq. (6.10) gives in particular the equations Y cpr = 194/(c 1//3’5) and Y4 = (—i/3)088
Y ap g . Hence the field ¢4 pc is completely determined given the field /’:é. Once the field
@4 pc is known, the field ¢£;3 can be recovered from the formula: ¢>2/B(xe) =i (x¢) —
ix A/C(l)(‘ A8(x¢). So knowledge of the single field v 2; (and its derivatives) is completely
equivalent to knowledge of the original field ¢, p¢. Finally the field equation for the field
o pc is just the standard zrm field equation gb'B ¢opc = 0. This equation immediately

83"‘/1//53 = (and conversely it is

implies (by straightforward differentiation) the equation
seen easily that the equation 354"y 2 = 0 implies the field equation 35 B¢, gc = 0. So we
have established that the cohomology group H'! (U, O(1, 1)), for appropriate domains U in
projective twistor space is isomorphic to the space of solutions of the equation 3¢ A 1//52 =
0, on the corresponding domain in space—time, with the field ¥ g/C being totally symmetric.
Finally from the definition of the field QB and from Eq. (6.8), we have the following
contour integral expression for the field 2‘}3:

1///?};()‘")=f 3488 f4 (x ppr, par)
y(x)
+ix4€8,48p fc (x*F pg, parpcr dp€ . 6.11)

Contracting Eq. (6.11) through with 747874, and using Cauchy’s integral formula to
reduce the integral to a one-dimensional integral, we find complete agreement with Eq. (6.5),
where the function F(z, {) = z” f, and the field @ (F) (x4, x4, m4) is then a fixed constant
multiple of the field ¥ 4 5 (x¢)7 w87 4, So we have shown the following proposition.

Propeosition 6.2. There exists an isomorphism between the sheaf cohomology group H hw,
O(1, 1)) and the space of holomorphic solutions of the equation 9, Ar(bg,B = 0.
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6.2. The general spin case

Consider the interpretation of the twistor cohomology group H' (U, O(p, q)). We assume
that the integers p and s = q¢ — p + 2 are positive (later we shall restrict further by
requiring that s > p). As discussed above, a representative element is an indexed function
fa1a2~--a,, (¢), which is completely symmetric, holomorphic, and homogeneous of degree
q — p in the twistor variable ¢ and such that 0 = %' fy,¢,..e,({). The unprimed spinor
field corresponding to the function fy,q,-«, may be given as follows:

AR IR S E / F(Z% X% pp + 11%) &p. (6.12)
v(X)

Here we have put F(Z,{) = ZMZ* --- Z% fy,05.-a, (§). The field ¢(Z7, x4, 7ty is a
homogenous polynomial of degree (p, s) in the pair of variables (Z%, 7 4), with coefficients
obeying the zrm field equation by Lemma 6.1. Our first objective is to obtain a formula for
the action of the twistor variable ¢# on such a field. Denote the result of this action by (¢ ¢)?.
Then for this field we have the expression: (¢$)?(Z, x, ) = Xﬂc/d)c/(Z, x, ) + I1P¢,
where the field ¢ is given by the following formula:

$c(Z,x,m) = / peF(Z* X% py + T &p. (6.13)
14%.9)

Multiplying both sides of Eq. (6.13) by s 4 1, we manipulate Eq. (6.13) as follows:

(s+1) ¢c(Z,x,m) = 43} /pc'F(Z“,X“B/pB'+H“)d2p

y(X)
=t / pc((B)aF)(Z%, X*B pp + 11%) d%p = —in A dac$(Z, x, 7).
v(X)
(6.14)
Summarising we have established the formula
(9P =n* (—i(s + )7 xPg, + sﬁ) $. (6.15)

Next, we consider the condition 0 = {*! fy,4,..a, (¢), Which is equivalent to the condition
0 = {%(9z)a F. When applied to Eq. (6.15), with the field ¢ replaced by the field (9z)y¢
this implies
0=nx4 (ixﬂf"aa - (s+ 1)3§) (02)59
=—n*xB48,(92)80 — (s + DB (B32)p¢ +in 8,04 ¢. (6.16)
Next we perform a change of variables and write the twistor Z% = (Z4, Z /) as follows:

zZ° = X“B/ZB/ + zBé‘g., so we have Z4 = ix%z4 4+ z* and Z4 = z4. Then the field ¢
becomes a function of the variables (x?, w4, z%), where z% = (z*, z4’). Under this change
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of variables, we make the derivative replacements: 8, > 9, — iz4'(3:)a, 82 +— 87,
(32)a > (3;)4 and 35 > 92 —ix?(3.) . Eq. (6.16) then becomes

0=—m*xB4 3, —iza8)3p¢ — (s + N B0ze
+Hir (B, = iz404)(3% —ixB )0
=7294(=s + 1 + )¢ +in"8,0% ¢. (6.17)

Here we have put 34 = (3;)4, 3% = (3.)* and y’ = z4-3*". Also define y = 9. Note
that the field ¢ obeys the equation (y + y’' — p)¢ = 0.

Eq. (6.17) may be regarded as giving a partial propagation of the field ¢ in the 7
directions. But we also have the field equation obeyed by ¢, which in terms of the original
variables is the zrm equation 3;‘ 9,9 = 0. In terms of the new variables this equation
becomes the equation:

0=03"8,0 —izs8%840. (6.18)

Removing the factor 74 from Eq. (6.17), we get the following equation, valid for some
field x:

da(—s + 1 +y)p +i8,0" ¢ = mayx. (6.19)
Applying the operator 3,? to (6.19), we get

(s+ Dx =8204(=s + 1+ +1019,0%'¢. (6.20)
Then, applying the operator 104" to (6.18) gives

0=(y +2)3234¢ +i3"82 8.0, (6.21)
and, finally, subtracting Eq. (6.20) from Eq. (6.21) yields

X =—087040. (6.22)

From Eqs. (6.19), (6.21) and (6.22), we get the following relation:

CHy)s—1—y)0ad =iQ+y)3,0% ¢ —imad? 35 8,0, (6.23)

and we also have a field equation which is obtained from Eq. (6.18) by contraction with the
: A
spinor z* :

=:%388,¢. (6.24)

For the present purposes, Eqs. (6.23) and (6.24) are the key equations. Note that Eq. (6.17)
is a consequence of Eq. (6.23), since the operator (2 + y’) is invertible. To analyse these
equations most easily, we henceforth restrict to the case that the quantity s — p is positive.
The quantity 04 ¢ and the right-hand side of Eq. (6.23) are each sums of terms homogeneous
of degrees O to p — 1 in the variable z 4. So with s — p positive, the operator (s — ' — 1) has
a well-defined inverse acting on such quantities. So we may rewrite Eq. (6.23) as follows:

dap =i(s — 1 — ") 10,040 — 2+ y) ' ma08 8%0,9). (6.25)
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We need to check the compatibility of Egs. (6.24) and (6.25). First we show that the
04 derivative of the right-hand side of Eq. (6.24) vanishes modulo equation (6.24) and
(6.25):
042" 0205 = 2" 8 05000
=iz% 98856 — 1 - )7 (30" ¢ — @ + ) '743 8L 8c9)
=its =) A+ )TN A+ 02" 97 80.0"
—2%'388,m43 35 3.4)
=i =) Ay 0+ )37 08ue® ¥ d — 2 3207 87 Bp0
+7468°C 38 8,0C 3.¢)
= /26 —y) ' U +¥) = +)@r)a0¢ — 22" 8 9" 8] 3¢
~2y'e" 3,07 ,9)
= /D' =97 (B)a0¢ + 207 ¥ 5,3,9)
={/2(¢" = )7 ((8:)40¢ + 8 €ap0¢) = 0.

Finally we need to show that applying the operator 3 to the right-hand side of Eq. (6.25)
gives zero. So it is sufficient to show that the quantity (2 + y")aA BaaA,db +7A BAE)B/E)f oo
vanishes, modulo equations (6.24) and (6.25). We see this as follows:
Q+v")343,0% ¢ + 940" 83,0

=GB +y)3%8,0" ¢ + 08 a8 ,n 9,0

=0,0" 2 +y"0%¢ + 85888, d40

=04 (s — 1 =¥ (@ +¥)3ac 9 ¢ — 7497 87 3p9)

+i0%988,(s — 1 — y) 'w48,04'¢
= —i(s =2 — ¥ (@* 9% 8) (3% 3T )¢ — (3% 37 3) ("3 3,)9) = 0.

Thus Eqgs. (6.24) and (6.25) are integrable. If we now write ¢ = Z,’:’___O o, withy o = ke,
for 0 <k < p, we get from Egs. (6.24) and (6.25) the following equations:

2388, =0 (6.26)
daduri =i(s — p+ k) 7188 ¢ — (1 + p— b 'mad® 85 ap0). (6.27)

Eq. (6.26) is valid for 0 < k < p. Eq. (6.27) is valid for 0 < k < p. Note that Eq. (6.27)
entails a recursive formula for the quantities ¢ :

Pkl = : (ZAB 0% i — 2mad” g
- a

, f k .
(k+1)(s—p +k) T+p—k ) or0sk<p

(6.28)
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Eq. (6.28) shows explicitly that the entire field ¢ is uniquely determined by the field ¢y.
The integrability of Eqs. (6.24) and (6.25) shows that the system of field equation (6.18)
for the field ¢ (x¢, 74, z%) is completely equivalent to the single equation z# 88 8,¢0 = 0.
for the field ¢q(x9, 74, z4'), inthe case s > p.

Summarising, we have outlined a proof of the following theorem.

Theorem 6.3. For any pair of positive integers (p. 1), there is an isomorphism between the
twistor sheaf cohomology group H' (U, O(p,2p + t — 2)) and the space of holomorphic
solutions of the field equation z% /3713 dp¢ = 0, where the field ¢ is homogeneous of degrees
(p + 1. p) in the variables (T4, zx).

In particular, we have the following corollary.

Corollary 6.4. The space of holomorphic solutions of the equations
IS =0 (6.29)

for spinor fields with m + | unprimed and m primed indices is isomorphic to the twistor
sheaf cohomology group H'(U,O(m + 1. m)).

We would like to make several remarks at this point. Firstly, although we have shown
the existence of the twistor correspondence for several different kinds of fields (i.e., with
different index structures when considered as spinor fields on space—time) it is only the
fields with homogeneity (p + 1, p) that can consistently propagate on a curved manifold.
All other fields suffer from the existence of consistency conditions. The twistor treatment
in this work is to some extent new in that we use an affine twistor space. This allows
to incorporate all homogeneities into one formula (see e.g., Eq. (6.4) in comparison to
(6.6)).

6.3. The group representation

We observe that there are natural operators acting on the twistor cohomology groups
H'(U, O(p, ¢)). Indeed consider the operators P*f and Qop and E§, which act on a
representative function F (z, ), homogeneous of degrees (p, g — p) in the twistor variables
(z, £) and obeying the differential equation ¢ - 3. F = 0, as follows:

P(F)=(zAL)F, (6.30)
Q(F)=(0: A3 F, (6.31)
E(F)=2®3, +L®3 +O)F. (6.32)

In Eq. (6.32), the operator § is the Kronecker delta tensor acting on the representative F
by multiplication. Note that each of these operators commutes with the operator ¢ - d.. The
operator P gives a map from H'(U, O(p, q)) to H'(U, O(p + 1, g +2)), the operator Q
maps H' (U, O(p. q))to H' (U, O(p—1, g—2)) and the operator E maps H' (U, O(p. q))
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to itself. These operators generate a Lie algebra under commutation. Indeed, by direct
calculation, we have the following commutation relations:

[P, P71 =0,  [Qup, Qysl =0,
[P, Qysl = —8SES),  (E]. P*]= 28" PPV, (6.33)
(E, Qupl =20, Qpis.  [E} Efl=8yEjy — 6, ES.

A dimension count gives dimension 28 for this algebra, six for each of the operators P
and @ and 16 for the operator E. The operator E generates the complex general linear
algebra GL(4, C). The algebra GL (4, C) in turn is isomorphic to the conformal orthogonal
algebra C 0 (6, C) (the orthogonal algebra together with a dilation). Adding in the operators
P and Q to this algebra gives the complete algebra of O(8, C), regarded as the conformal
algebra associated to O(6, C), with P forming the translations, Q the generator of special
conformal transformations, the trace-free part of E generating rotations and the trace of E
giving the dilation. If we introduce the standard pseudo-hermitian form on twistor space
of signature (2, 2), then this algebra has the natural real form O (4, 4), with the operator
iE self-conjugate and Q the pseudo-hermitian conjugate of P. So we have shown that the
direct sum over p of all the cohomology groups H [ (U, O(p,2p +t — 2), gives, for each
fixed ¢, a complex representation of the Lie algebra of the group O(4, 4). It remains an
open question whether or not this representation is unitarizable. Indeed the “natural” inner
product, derived from the action of section one above is not positive definite in the case
of spin greater than % So it would seem that the representation is “naturally” defined on a
space with a “natural” inner product, but not a Hilbert space. If one took such representations
seriously, it would apparently require enlarging the framework of quantum mechanics to
accommodate “negative probabilities”.

Finally we note that although this algebra is most easily derived in the twistor picture, one
can easily translate into the space—time picture, using the techniques of this section. In the
space~time picture the operator E acts on the fields as the (complex) conformal algebra of
space-time. The operators P and Q and E act as follows on a field ¢ (x?, 4/, ) obeying

the equation M’¢ = 0 and homogeneous of degree s in the spinor 74:

Py =

1 C v’ Bl
aerCxXClephly,
s+ 1) ¢ c®

1
Qupp = — (+1)(3n)03 X[O,Q,s]c’¢
Ef¢ = —ixP X004 + XP5cpn 0 ¢ — X5 82(8,)p(x€9),

where we have used the following definitions:

P =(s+18% —iXP%,, Qup = (s + Déap —iX2d,
xBe = x84 58),  xB =8, —ixBY),

8 =(64.0),  Sup =(0,5%).
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7. Conclusion

We have presented the properties of a class of linear equations for fields with half integer
spin m + % which generalise the Weyl equation for a neutrino. We have shown how the
equations arise as Euler-Lagrange equations for a variational principle. The equations are
of hyperbolic type in the sense that the Cauchy problem is well posed and that there exists
the notion of a domain of influence. The characteristics of the system are multiply sheeted.
The fields propagate freely on any curved background, i.e., there are no constraints on
spatial hypersurfaces to be satisfied by the Cauchy data. The solutions lie in certain Gevrey
classes provided that the Cauchy data and the metric of the underlying manifold do so.
We find a strong relationship between the spin of the fields and the smoothness of the
metric, ranging from only C¥ in the neutrino case up to analyticity in the limit m — oc. We
analysed the characteristic initial value problem using the formal method of exact set and
showed that it is well posed in the curved background case as well as when the system is
coupled to gravity via the Einstein equation. It is interesting to note, that this is a system of
partial differential equations that is not symmetrically hyperbolic (unless m = 0) but still
allows the description via an exact set. All other examples of exact sets so far have been
systems of equations which were also symmetrically hyperbolic. This implies that those
two characterisations are not mutually included one in the other. We have given the general
solution of the equations in Minkowski space by first solving the equation O"*'¢p = 0
using Fourier methods and then deriving the Fourier representation for positive frequency
fields. Finally, we presented a twistor correspondence between the space of holomorphic
solutions and sheaf cohomology groups on projective twistor space.

The solution space of the equations in flat space is a representation space of the Poincaré
group. In contrast to the case of the massless free fields, however, this representation is
reducible unless m = 0. This can be easily seen from the fact that the entire solution space
for spin 2m — 1 is mapped injectively into the solution space for spin 2m + | by the operator
L. The solution space is also a representation space for the conformal group. It is not yet
known whether this representation is irreducible.

It would be interesting to find similar classes of consistent higher spin equations for integer
spin generalising the Maxwell equations. So far, the attempts have been unsuccessful.
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Appendix A. Gevrey classes of functions

Essential in the proof of existence and uniqueness of solutions of non-strictly hyperbolic
systems of partial differential equations is the notion of Gevrey classes of functions. These
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are sets of C™°-functions, labelled by a real number o > 1 which in some way interpolates
between analytic functions (& = 1) and functions which are only C* (conventionally made
to correspond to the case @ = oo, see below).

Definition A.1. Let S be an open setin R/, p > 1 and @ > 1. Then y,f“) (S) is the set of
functions f : § — C such that

1 1/lo|
sup———||D? £, S| < 00, (A1)
P T jope PSSl

where o is a multi-index o = (01,...,0)), 6| = 0 + --- 4+ oy and | f, S|, is the usual
L?-norm of f.

Similar classes are defined to characterise the behaviour of the functions with time.

Definition A.2, Let X :=[0,T] x Sbeastripin R'*!, p > 1,n > l and @ > 1. Then
Yo @) (5Y is the set of all functions f : & — C such that

1 tlo|
sup —————||D7TA £ S| < 00, (A2)
o.ﬂ.[x)o 1+ o)™ i

where, again, ¢ and B are multi-indices with o9 = 0 (i.e., o refers only to “spatial”
derivatives) and 0 < x0 < T. S, is the slice x° = ¢, as usual.

We extend the definition with ¢ = oo by the rule that (1 + [¢|)* = 1 for |o] = 0
and (1 + |o|)* = 0 otherwise. Then y,ﬁoo) (S) is equal to the function space L,(S) and
y;' +(00) (X)) is equal to the set of all functions for which || D? f, S; || is a bounded function of
t for all g with |8] < n.

For p = 0o, = 1 and for real valued functions this is the classical case of Gevrey [6].
In that case yo(g )(S) is an algebra which is closed under the composition of its elements. A
similar property holds in the general case (see [8]).

Here are some basic properties of the Gevrey classes: they grow with ¢; if ¢ < a3, then
yr @2y c yp(Z). Also y(E) c y (D) if m > n. If o = 1 the classes
consist of functions which are analytic in x o , but for ¢ # 1 one can show that
there exists a partition of unity into elements of the classes with arbitrarily small support;
functions with compact support are not necessarily zero.

The essential qualitative distinction within the Gevrey classes seems to be between the
casea = l and @ > 1, the latter case permitting domains of influence and thus allowing the
study of wave propagation. This indicates the hyperbolic character of the equations under
consideration. The second distinction is between the cases of finite @ and & = oo. Infinite
o permits the existence of only a finite number of derivatives and thus the appearance of
shocks is possible indicating the strictly hyperbolic case.
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