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Abstract 

We analyse a class of linear wave equations for odd half spin that have a well-posed initial value 
problem. We demonstrate consistency of the equations in curved space-times. They generalise the 
Weyl neutrino equation. We show that there exists an associated invariant exact set of spinor fields 
indicating that the characteristic initial value problem on a null cone is formally solvable, even 
for the system coupled to general relativity. We derive the general analytic solution in fiat space 
by means of Fourier transforms. Finally, we present a twistor contour integral description for the 
general analytic solution and assemble a representation of the group O (4, 4) on the solution space. 
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1. Introduct ion 

It is a well-known fact that many spinor equations that are perfectly well behaved in (fiat) 

Minkowski space cannot be translated to a general four-dimensional curved background 

manifold. This happens e.g., for the zero rest-mass (zrm) fields with spin s > 1 and for 

the twistor equation. In these cases the appearance of the Buchdahl conditions ([2,12]) 

imposes algebraic conditions relating any solution of the field equations to the (conformal) 

curvature of the manifold. In the zrm case, these conditions are very restrictive in that they 
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limit the solution space of  the equations for a general given background manifold. In the 

case of the twistor equation one finds that solutions can exist only on algebraically special 
3 the manifolds of  type N or O. Recently [11], there has been some interest in the case s = 3, 

Rarita-Schwinger system, for which the consistency condition is just Ricci-flatness of  the 

manifold such that one can regard the vacuum Einstein equations as integrability conditions 

for this system of spinor equations. 

Despite this very interesting approach to the vacuum Einstein equations and its relation 

to twistor theory we want to present here a class of  spinor equations which does not have 

the drawback of  being well defined only on flat space-time (cf. also [14]). In particular, 

these are linear equations for a spinor field of  half integer spin s, which include the Weyl 

neutrino equation as the case s = ½. The general equation we shall consider may be written 
as follows: 

oA(A'rh B'...C' D') 
WAB...CD = 0 "  (1.1) 

Here the operator OAA, is the standard Levi-Civith spin connection and the spinor field 

98'...C'D' is totally symmetric and has m + 1 unprimed indices and n primed indices, AB...CD 
with m and n being non-negative integers. A simple count shows that the field ,h~'...c'l/ "e'AB...CI) 
has (m + 2)(n + 1) components at every point, whereas the number of  field equations is 

(m + 1)(n + 2). So the excess number of field equations vis ~ vis components is m - n. 

In the case m < n, we have fewer field equations than components. Typically this leads to 

gauge freedom (at least in flat space): for example in the case (m, n) = (0, 1), Eq. (1.1) 

gives the self-dual Maxwell equations for a potential q~, which has the gauge freedom 

~b,, ~ ~b, + 0,4~ with 4~ an arbitrary scalar field. Next in the case m > n, we have an over 

determined system. This leads to integrability conditions and possible inconsistencies in a 

general curved space-time. The classic example is the case n = 0, in which case Eq. ( 1.1 ) 

becomes just the standard zrm equation for spin (m ÷ 1)/2, which is inconsistent in general, 

at least for m > 4. The subject of  this work is the case m = n, where there are exactly 

as many equations as there are field components, so one might expect that there are no 

non-propagating degrees of freedom and no constraints. Indeed we will show that these 

equations possess the following properties: 

- They can be derived from a variational principle. 
- They are conformally invariant. 

- The Cauchy problem is well posed in flat space and in an arbitrarily curved spaces. 

- There exists an equivalent exact set of  spinor fields [ 10] for the fields when propagating 

on a curved background and also when they are coupled to gravity, which means that the 

characteristic initial value problem is formally well posed. 
- The fields propagate along null hypersurfaces in flat space. However, they do not sat- 

isfy the wave equation []~b = 0 but an equation [3m+Jq~ = 0 instead, where [] is the 

d 'Alembert  operator corresponding to the spin connection. 

- The general solution in Minkowski space can be given using a variation of Fourier 

transforms. 
- A twistor description for analytic fiat space solutions can be given. 
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The plan of the paper is as follows: in Section 2, we present the variational principle and 

derive the energy momentum tensor. To do this we need to explain and extend a formalism 

given elsewhere [4]. In Section 3, we discuss the Cauchy problem and show the existence of 

solutions. In Section 4, we explain the relation with exact sets and discuss the characteristic 

initial value problem. Section 5, is devoted to the general solution in Minkowski space and 

in Section 6, we show how to obtain solutions by performing contour integrals in twistor 

space thereby establishing an isomorphism between analytic flat space solutions and certain 

cohomology groups for suitable domains in projective twistor space. 

2. The variational principle and the energy mom entum tensor 

In this section we will derive the spinor equations from a variational point of view. We 

will use a formalism described in [4] to derive our results. In order to introduce the notation 

and also to transcribe the various formulae to apply to spinors we will briefly review its 

basic features. 
The starting point is an so( l ,  3) principal bundle O(.A4) over space-time .A4 carrying a 

tensorial one-form 0 a with values in R 4 and a connection form 0% with values in the Lie 

algebra so( l ,  3) of the structure group. There also exists a constant matrix Oab of signature 

(1, 3) that is used to construct the Lorentz metric on A4. We will require that the connection 

be torsion free, i.e., DO a = 0; D is the exterior covariant derivative. Making use of the 

standard 2-to-1 epimorphism of SL (2, C) onto the orthochronous Lorentz group to enlarge 

the structure group of the bundle and employing abstract index notation we may write 
0 a = 0 AA', Oab = --EABOA' B, -- EA'B,OAB, t h u s  defining the unprimed and primed spin 

connections, symmetric in their respective indices (the sign is chosen in order to conform 

with other references). Then the torsion free condition is (note that we suppress the wedge 

because it will be the only product we use between forms) 

0 -~ dO aa' + OABO BA' --}- OA'B,O AB'. (2 .1 )  

We introduce a set of vector fields OAA,, OA 8 dual to the forms 0 AA' and 0 A 8. Their action 

will be extended from functions to indexed quantities by requiring that they be derivations 

of the algebra of indexed forms annihilating 0 AA' and 0 A 8, see [5] for further details. 

We define a variation at 0 a and 0% as the derivative at ~. = 0 of one-parameter families 

Oa()~) and Oab()~) with oa(o) = 0 a and Oab(O) = Oab . Denoting the variations by X a and 

Xab we find that X a is a tensorial one-form with values in ~4, Xab is a tensorial one-form 
with values in so( l ,  3). Using spinor indices and decomposing into irreducible parts we 

have 

X AA' = ~ABA'B'OBB'  -~ l f f o a a '  -~- t a b  OAB' + ~'A'B'oBA'. (2 .2 )  

The variations are not independent; in fact, the torsion-free condition entirely fixes the 
variation X a B = X a BCC' OCC' o f  the  connection for given X a : 

E' 1 
XABCC' = --O(AGB)CUC' -~- ~EC(BOA)C 'a  "~- OCC"rAB . (2.3) 
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Spinor fields can now be considered as tensorial functions with values in the appropriate 

representation of  S L  (2, C). In particular we consider totally symmetric fields 1/, A B...C with v" B, . . . ( ' ,  

m primed and m 4- 1 unprimed indices. Note however, that we will switch back and forth 

between viewing the fields as tensorial functions on the bundle and as spinor fields on 

space-time M (sections in an appropriate associated bundle). With these preparations we 

can now write clown the following horizontal four-form 

£ = Im ~ . . . c  DOts , . . .  c ,  ZAA', (2.4) 

with Z , ,  1 ,~h,~.,~,~ = g~uh, . jc ,  ~ ~, • Note that we consider our spinors to be commuting quantities. 

If  instead we would need to have anticommuting spinors we would use the real part instead 

of  the imaginary part in Eq. (2.4). Since £ can be considered as the pullback of  a unique 

globally defined four-form on M we may define the action .A as the integral of  £ over M :  

.A  - f M  £"  It is then easily verified that the variations of  A with respect to ~ (7t) give the 

equation (and its complex conjugate): 

D_~_AB. . .C  v', 
~UIB,...C,Z,A,)A -~ O. (2.5) 

a I E a b c d O a O b o c o d .  Using this and strippin~ Now D = OaOa and oaz 'h  = 8b~  with .~ = 

off the form Z,  we obtain the desired field equation: 

O ,t, A B . . . C  
A~A'~'B, . . .C')  = 0. (2.6) 

Let us now discuss some of  the basic properties of  this field equation. First, we note that for 

m = 0 this is just the Weyl neutrino equation OAA'~)A  = O, which is the zrm field equation 

for spin ½. Just as the neutrino equation the general equations are conformally invariant if 

we assume a transformation of the fields with conformal weight - 2 .  We define the other 

irreducible parts of the covariant derivative of  ~p, 

)AB...CD ~(D,hAB...C) (2.7) 
B ' . . . C ' D '  ~ ~(D~'Y B ' . . .C  ') ' 

u~B // SIa, ,8.  Ct (2.8) 
,... , ~ ,, ,e E , B , . . . C , ,  

AR.. .C _ 3 U  , t~EAB.. .C (2.9) 
vB' . , .C'  - -  E v E ' A ' . . . C "  

Then, we have the expansion 

o E  ~&AB. . .C ~ ) E A B C  _ _ _  
E,  V, B, . . .C '  E,  B~...C , 

m E A B . . . C  m " B. . .C)  
m + 1 CE'(B'[~C') m 4-  2 C E ' I B ' ~ L t A  U C ' )  " 

(2.1(I) 

By virtue of the field equation these fields satisfy the following relations (among others): 

m ~_ A C . . . D  r-~ • A B C . . . D  
m-+ 1 O A ( A ' I ) C ' " ' D ' )  ~ U A B l f f  A ' C ' " ' D "  

m M A  B C . . . D )  = [ ] ( A  . t . B C . . . D ) E  1 ~ • A B C . . . D  
m + 1 0 ( A ' I ) C ' O ' )  E ~ t J A ' C ' O '  - -  - 2 u l f f a ' c " D ' "  

~ A B . . . C D  wn ~,t, B C . . . D  
A(A '~XB, . . .CID,  ) ~ U ( A  B t P c , . . . D ,  ) 

(2.11) 

(2.12) 

(2.13) 
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o A I  A B . . . C D  _ 1 R ~ I t B C . . .  D [N . (B ,I C . . . D )  A 
Z "~A'C'...D' 2(m + 1) - - ' rC '"D '  -- a V'C'...D' 

m n(g , tc . . .D)  m hE'  ,t, BC...D (2.14) 
Jr- t, ( C , ,t,, . . D,  ) -Jr- - -  ( C,  ,t, . . . D, ) E , , 

m + l  m + l  

AB...CD _ 1 R , b B . . . C D  R D ,  ,I, B C . . .  D 
A(A'I£B'"'C') 2(m + 2) ~ ~'a'g'...c' + ~(A'V'B'...C')D' 

m + 1 ,ItC.. .D)A I_..._~o(B C...D) (2.15) 
Jr- R A ( B  ,e, A , B , . . . C ,  Jr- I) B , . . .C ,  ) , m + 2  m + 2  (A' 

, __ ] , - , , o ,  B "  D I - B  A B C . . . D  _m + 1 | a B ' ( B ,  C . . . D )  []t~ o lPB~C.,. . . . .D,I ( 2 . 1 6 )  
OA I L B ' C ' D '  m + 2 v ~ g ' c ' . . . D '  + 

In these formulae we have used the spinor curvature derivations []AB and []A'B' as 

defined in [12]. To further analyse the situation it is very convenient to introduce four 

differential operators L, M, M'  and N acting on irreducible spinor fields by taking the 

covariant derivative and then projecting onto one of  the four possible irreducible parts 

(see [5] for a rigorous definition and further details). Thus, for a field ~ with p unprimed 

and p '  primed indices and all its indices down, we identify Ldp - -  O ( E , ( E l l t A . . . B ) C , . . . D , ) ,  
1~E1 . t ,  , E t E E '  

M'dp "-- - p  t,(Eq.,A...B) c ...E', Mdp -- --pO(E,~C,...o,)a... E, N49 "-- p p  O ~tA...EC,...E,. 

These operators obey certain commutation rules, most of which are trivial in flat space. The 

nontrivial ones are [L, N]~b = - ½ (p + p '  + 2) rn4~ and [M, M']~b = - ½ (p - p ' )  rq~b. There 

is a further relation: LNdp - MM'dp - ½p(p '  + 1)[]~b = 0. The wave operator commutes 

with all the derivative operators. In flat space, Eqs. (2.1 1)-(2.1 3), and Eq. (2.15) above can 

be written as follows: 

M')v = O, M ' v  = 0, M'/z = l[3~p, 

N)v = - m ( m  + l ) L v  + ½(2m + 3)[]~,  L v  -- m +_____~ln~" (2.17) 
2m 

We observe that v and )v are spinor fields of the same class as ~p obeying the same equation. 

In contrast to the zrm case, the field 7* does not obey the wave equation [~ap = 0 (unless 

m = 0, because then/z = 0). However, with these preparations it is now easy to prove the 

following proposition. 

Proposi t ion 2,1. Given a smooth spinor f ie ld tp with m pr imed and m + 1 unprimed indices 

subject to the f ie ld equation (1.1), then Fqm+l ~ = 0 in f lat  space. 

Proof. We prove this by induction on m. The case m = 0 is the Weyl neutrino equation 

for which the assertion is true. Now assume it is true for (m - 1), then Rml) = 0. But then 
0 = Zr-qmv = vlmLNap = [ ]m(l (m + 1)2~)~ = l (m + 1)2vqm+l~. [] 

Finally, we want to derive the energy momentum tensor of these spinor fields. This 

is usually done by considering the action as depending on the metric of  the background 
manifold and then varying with respect to that metric. The result is the natural object that 

would appear on the right-hand side of  the Einstein equations if the system were coupled to 

gravity. In our case we cannot regard the action as depending on the metric, we have to take 
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it depending on the canonical one-form. Then the variation of  the action with respect to 0" 

contains terms proportional to o" A B A' B', .CA B and a .  The functional derivative of  the action 

with respect to O'ABA, B, is the trace free part of  the energy momentum tensor, while taking 

the functional derivative with respect to a gives the trace part. However, in the present 

case, we expect this term to vanish due to the conformal invariance of  the equation and the 

functional derivative with respect to "CAB will be seen to vanish as well. This is related to 

the fact that the connection is required to be torsion free. The variation of  the action with 
respect t o  0 AA' is 6A = I m f 6 £  with 

- A "  C '  "A o t - ~  1",.~. o ... t .t. 'J'"'-)'-, 7 A ' B ' . . . C '  - E '  ,t, A B . . . C I  v', 
~/~ = {(m + t ) t p B . . . C  X Etl tB, . . .C , - -  m'l[tB...C X (B't~VC,...)E,I.c-.,AA' 

- A ' B ' . . . C  AB. . .C 
+ { ~ B . . . C  D ~ B ' . . . C '  } 3 z ~ A A "  (2.18) 

Using a formula (which however contains a misprint) from [4] we find the formula 3 Z .  = 

2X bib Zal. If  we now Put all the cr-terms in X AB equal to zero, retaining only the .c terms, 

we get 

3L~ {(m + 1)~A'B.c"C'D *(A " t 'B ' "C)E  7 A ' B ' . . C ' ~ - E '  , ,t ,  AB. . .C 
: . . . .  ~ EgJB,. . .C, - -  m ~ B . . . C  13.C (B ~C ' . . . )E '  

- E 'BL.C ' EB. . .C AA'  
+ ~ B . . . C  D ~ B , . . . C ,  T E E ' } , ~ ' A A ' .  (2.19) 

Integrating by parts and using the field equation several times gives 

7 A ' B ' . . . C  A r',,.i. BC. . .E r', 7 A ' B ' . . . C t - E  ' AB. . .C 
¢3ff_, = --'I])'B... C 75 EL, ' tpB, . . .C,  xZ, AA'  -'1- mlD'B... C T B ' D ~ . . . C , E ,  "~AA'  

- ' ' ~ 7 A ' B ' . . . C ' - E '  r'~.t, AB. . .C • - - A  B ...C E I ) ~ b A B . . . C , ~ E A  ' _.1_ lp~B... C "g A UgJB, . . .  C' "~AE ' .  --I-1D'B... C "C A ~ ' . r  B,... C, (2.20) 

Now the first and third term cancel, while the second and fourth term combine to a multiple 

of  the field equation. Hence the functional derivative of  the action with respect to the r 

terms vanishes. By a similar argument one can show that the terms proportional to tr also 

vanish so that one has to consider only the trace free parts proportional to tTABA,B,. In this 

case the calculation is similar but more complicated, so we only state the result. The energy 

momentum tensor of  the spinor fields subject to Eq. (1.1) is 

o A  B C ...D ABC. . . [  T ABA'B' ----Im (2m - -  I'I~C'"'D'(A'~B')BACD m(2m + 1) . . . . .  
~"wC. . .D  "~C'...D' m + 1 l l tC" 'D t £ C " " D '  

mZ(2m + 7) 7A'B'C'...D'(A B)C...D ] 
(m + 1)(m + 2) *c. . .o  v c ' " ° '  I " (2.21) 

By construction, it is divergence free and due to the conformal invariance it is also trace 
free. Note that it is made up of  the fields and all the non-vanishing irreducible parts of  its 

first derivative. The case m = 0 agrees with the conventional energy momentum tensor for 

the Weyl equation. 
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3. The Cauehy problem 

In this section we will prove that Eq. (1.1) has a well-posed Cauchy problem, i.e., we 
will show that given appropriate Cauchy data on a spatial hypersurface S there will exist 

a unique solution of Eq. (1.1) on a small enough neighbourhood of S. So existence and 

uniqueness will hold (only) locally in time. 
We will first examine the hyperbolicity properties of  Eq. (1.1). Let us write the field 

equation in the form 

((~B; . x C ' ~ P ' x P  O E AB.. .C 
( ' "" ~E'~A')~ ' (A " ' "  (~B (~C))OPP'~[JB'...C' = O. (3.1) 

We abbreviate the product of  3's by A~,, thus introducing the clumped indices a "-~ A A' and 

v,/2, indicating elements of the spin space ¢AB..C and its complex conjugate dual space. ~B' . . .C'  
Then Eq. (3.1) has the form 

A~vOa~ v = 0. (3.2) 

For each covector Pa, paAa~ defines a map P from S ~' into S~ which is easily seen to 
define a sesquilinear form on S v. Before proceeding further, we will prove two useful 

lemmas concerning the map P. 

L e m m a  3.1. The map P is an anti- isomorphism i f  and only i f  pa is not a null vector. 

Proo f  For the sufficiency we use induction on the number m of primed indices. For m = 0 
_ A ' _  , . a = I p 2 V D  0, where the map is v A ~-~ PA,A vA. If  PA,AV A = 0, then PD t'A AV = 

p2 = papa.  Hence, if p2 # 0 then P is injective and therefore bijective. Now suppose the 

statement is true for an integer m - 1 ; we will show that this implies that it is also true for 
m. In this case the map is aAS...C ,AS.. .C AS...C _ 0 then also 0 = "~B'...C' ~~  PA(A'~ 'B ' . . .C ' )  • If  PA(A,~.B, . . .C, )  - -  
pA '  _ a A B . . . C  AB. . .C A I 8I'A(A'"8'...C,) = ( m / ( m  + 1))pA(S&...C,)A,P 8. The induction hypothesis implies 

B' AB. . .C a A B . . . C  A 'D ,~AB. . .C  that PA ~'8'...C' = 0 and therefore PAA'^8'...C' = 0 but this implies p PAA "~8'...C' = 
I _2,A8.. .C _ O. So, if p2 # 0, the map is injective and therefore bijective. If  p2 = 0, 
-~[3 •B'. . .C' - -  
then we may write PAA' = PAPA' for some spinor PA and its complex conjugate and then 
) AB. . .C = p A  p B  8'...c' • • • p C p 8  . . . .  Pc '  is a non-vanishing spinor that is mapped to zero. [] 

Lemma 3.2. The determinant o f  the sesqui l inear form defined by P is 

de t (paA~v)  = C ( p a p a )  N / 2 ,  (3.3) 

where N = (m + 1) (m + 2) is the dimension o f  S v and c is a non-zero real number depending 

on the choice o f  basis. 

Proo f  Consider the "characteristic polynomial" Q ( p )  = d e t ( p a A ~ ) .  As a determinant 
it is a Lorentz scalar and since the only available scalar for a given Pa is p a p  a it follows 
that Q (p) is a function of Papa.  Since Q (p) is a homogeneous polynomial in Pa of degree 
N, the result follows. Another way (which is useful later) to see this is the following: The 
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• " A "  ~'~.. tw where~l,t..~,,~, i sa (dua l )  determinant is proportional to ~u ~ ~ u  Pa A ~  ~ ~t " " ~"~ ~ x "x ~ 

volume form on S". As such it is built up from the volume form eA~ of spin space. After 

contracting away all the E's in the expression we are left with N p , ' s  which are all contracted 
' 1 ~ a  ~ B t 

with each other. Due to the identity P A a , P  AB = ~P, , tJ  CA' each pair of p , ' s  contributes 

one factor Pa P"  to the determinant. Since there are N / 2  pairs, the result follows. [] 

From these two lemmas, we see that the system (3.2) is not symmetric hyperbolic unless 

m ---- 0. If this were the case, then there would exist a time-like future pointing covector p,, 

such that - A a k', ~ ,  was hermitian and positive definite. Although the system is symmetric,  

it is not definite. For let Pa be any time-like future pointing covector with p,, p "  = 2 and 

choose a spin frame (o A, t A) such that p,, OAO A, + tArA,.  Then we choose ) AB.~C 

o A o  B • • • OCOB . . . .  OC' and find that ~ . ~ p a A ~ ) ~  I' = 0 if m > 0. This, of course, implies 

that not all (real and non-vanishing) eigenvalues of p , A ~ ,  can be of strictly one sign. In the 

Weyl case it is well known that the equation can be written in a symmetric hyperbolic way. 

To proceed further we determine the characteristics of  the system (3.2). These are surfaces 

locally described by the vanishing of  a function 4~ such that it is not possible to determine 

the outward derivatives of  a function from the given Cauchy data on the surface• Hence, on 

these surfaces the "characteristic equation" det(A~l~ ,, 0,,~b) = 0 holds. Because of  Lemma 3.2, 

each characteristic surface is a null surface. At  each point of M the normal characteristic 

cone defined by Q ( p )  = 0 coincides with the null cone at that point. However. unless 

m = 0, the characteristic cone has multiple sheets which implies that the system is not 

strictly hyperbolic. The theory for non-strictly hyperbolic differential operators is not as 

well developed as for strictly hyperbolic or symmetric hyperbolic operators• However, in 

our case, we can apply a theorem of Leray and Ohya [7] on non-strictly hyperbolic systems 

of  partial differential equations• Their main assumption is that the characteristic determinant 

Q ( p )  factorises such that each factor is a strictly hyperbolic polynomial  J which certainly 

is the case here because p,~p"  is a strictly hyperbolic polynomial  of degree 2. They show 

that for Cauchy data on an initial nowhere characteristic surface S which belong to a Gevrey 

class of  functions with index ~ the system has a unique solution in that class. This solution 

admits a domain of dependence, i.e., the value of  the solution at a point depends only on 

the Cauchy data in the past of  that point• 

Let S be a spacelike hypersurface in M and ta a time-like vector field on M. Define a time 

function t on M by the requirement that t = 0 on S and that t"O,,t  = 1. We define spacelike 

surfaces S~ as the surfaces of  constant t. Given coordinates (x  t , x 2, x 3) on S we can con- 

tinue them off S along t a by Lie transport, i.e., by requiring that the lines x i = const, are the 

integral curves of t " .  Thus, we obtain a coordinate system (t = x °, x 1 , x 2, x 3) on an open 

submanifold S of M that is topologically S × ~. We choose a spin frame (o ~ , t A) such that 

o A o A ' + t  A t A' = q / ~ n  a, the unit normal to St.  Then ~PA 8...C 8'...C' has components 7r ~ = ~Pk~:' 

with c~ = (m + 1)k + k ' , 0  < k < m + 1,0 < k' < m (such that 0 < c~ < (m + l)(m + 2 ) )  

t A polynomial Q(~) of degree n is strictly hyperbolic iff the cone C = {~: Q(ff) = 0} has a non-empty 
interior such that each line through an interior point not including ~ = 0 intersects C in exactly n distinct 
real points. 



6 2  J. F r a u e n d i e n e  r, G.A.J.  S p a r l i n g  / J o u r n a l  o f  G e o m e t r y  a n d  P h y s i c s  3 0  ( 1 9 9 9 )  5 4 - 1 0 1  

and 

l~rkk, ~-- I~tA. . .BC. . .DA, . . .B ,C, . . .  D, 0 z . .  . 0 B t C . . .  t D 0 A '  . . .  0 B '  t C '  . . . t D'  . (3.4) 

By taking components of  Eq. (1.1) we obtain a system of equations of  the form (Da denoting 

the partial derivative with respect to x a): 

Gala(t, x)DolP ~ + F~( t ,  x ) ~  t~ = 0. (3.5) 

Here the functions Gap(t, x)  are functions on M which are algebraic expressions in the 

metric components gab with respect to the coordinates (t, x) = (x °, x I , x 2, x3). The func- 

tions Fff (t, x) are algebraic expressions in the coefficients of  the spin connection. We define 

a~ (x, D) as the linear differential operator in (3.5). Then we consider the following Cauchy 

problem: 

a~(x,  D)~p~ (x) = O, 

gr~ Is is given. (3.6) 

It follows from Lemma 3.2 above that up to operators of  lower order than N = (m + 1) (m +2)  

we have det(a~ (x, D)) = []N/2 where we define the determinant of  non-commuting quan- 

f i t i e s b y t h e u s u a l f o r m u l a d e t ( a ~ ( x , D ) )  = ff'~Tr ~SN sign(~r) a~r(1)l . . . a  N~N). [3 is the wave 

operator with respect to the metric gab expressed in the coordinates (xa). This operator is 

strictly hyperbolic with respect to the hypersurfaces St. We are now in a position to prove 

the following theorem. 

Theorem 3.3. Let ot be a real number with 1 < ot < N / ( N - 2). I f  the metric coefficients 

are in the Gevrey class y~/2)N'(~) ( r )  and i f  the initial data ~p~ are in the Gevrey class 

y(a) (S) then in a sufficiently narrow strip ,U' = {(t, x): 0 < t < T} around S the Cauchy 

problem (3.6) has a unique solution lp ~ E yI+N/2'(~) (E) ,  whose support is contained in 

the domain o f  influence of  the support o f  the initial data. 2?' = r i f  l < ot < N / ( N  - 2). 

Proof  This is a straightforward application of  theorems of  existence and uniqueness in 

Section 6 of  [7]. We only need to determine the various integers needed in the theorem. 

We associate the integers m/~ = 1 with each unknown function ap ~ and the integers n'* = 

0 with each of  the equations such that order(a~(x, D)) < m ~ - n ~ = 1. Then m = 

)--~t~ (m~ - nt~) = N is the order of  det(a~ (x, D)). Each of  the factors in the principal part 
in det(a~ (x, D)) is equal to the wave operator such that aj = [2, mj = 2 for ( j  = 1 . . . . .  N) 

and the number of  factors is p = N / 2 .  Since in our case r = 1, we need to add to each of  

the integers m g and n ~ the same integer N / 2  in order to satisfy the chain of inequalities 

O < r < p < n < n ~ < F z ,  n < m  t~, p < m ,  (3.7) 

as required in [7]. With our choice of  the integers we have m ~ = 1 + N / 2 ,  n ~ = O, p = 

N / 2  = n = h and the inequalities are satisfied. According to the theorem the index ~ of  the 
appropriate Gevrey classes lies in the interval 1 < t~ < N / ( N  - 2). The coefficients of  a~ 
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are a s sumed  to be in y3ocN/2-1. (u) (27), those  ofa j  j+N/2 (ce) are m Y~c (27) for0 < j < N / 2 -  I. 

Since all the factors are the same, aj = [3, this implies that the coefficients are in fact in the 

smallest possible class which is y N -  l. (u) (27). The coefficients of the operator a have to be 

in the class yN/2,(c,)(27). Taking all this together and remembering how the coefficients in 

the operators are constructed from the metric, this implies that the metric coefficients have 
to be in y3U/2.I~)(27). Then, the conclusion of  the theorem implies that the solution of  the 

• I+N/2.(~)~w~ Cauchy problem is in the Gevrey class y ~  tz,).  [3 

According to this theorem there exists a strong correlation between the spin of  the field 

and the degree of smoothness of the space-time that admits a solution of  the equation• The 

higher the spin, the "smoother" the space-time has to be. The smoothness is controlled by 

the number of  components of  the field, N, which depends quadratically on the spin m + 

of  the field. We can improve on this relationship somewhat by using a simplification due 

to Bruhat [1] which is based on the observation that if all the minors in det(a~) have a 

common factor, then this factor can be ignored which results in a reduction of the number 

p of factors of det(a~ (x, D)) and therefore in the Gevrey index or. To be more precise, we 

need to prove the following lemma. 

• " r "  A "  L e m m a  3.4. In the adjomt mat tx o f  pa j-, ~. all the entries have the factor  (pc, Pa)'" ¢''' +it, e 

in common. 

Proof  As in the proof of  Lemma 3.2, this result can be obtained by "index counting". 

The adjoint matrix is given by the expression - - -  " -  - <~ H,~...,,x E Iz lz 2 I~ N Pa2 A 222 t,z " " " Pax A ~ ~ ~,.~. ~ 

homogeneous of  degree N -  1 in Pa. If  we contract over all the indices contained in all the E's 

in the volume forms we are left with an expression that contains N - 1 = (m 4-1 ) (m 4- 2) - 1 

p,, 's, each with one unprimed and one primed spinor index and has (2m 4- 1 ) free indices 

of either kind. Therefore, (N - 1) - (2m 4- 1) of the p,, 's are contracted together, resulting 
in a factor (Pa pa)m (m+l)/2 in each component. C~ 

This lemma allows us to prove the following corollary. 

C o r o l l a r y  3.5. In the statement o f  the theorem we can extend the range o f  the Gevrev index 

ot to 1 _ < ot < 1 + 1/m.  More precisely, i f  the metric coefficients are in the Gevrey class 

yLm+ 3"(u) ( 27) and i f  the Cauchy data are in y (2C° ( S), then the Cauchy problem (3.6) has a 

unique solution ~I3 E y2+2'(u)(27 ') in a sufficiently narrow strip 27' around S. 

Proof  We observe that in proving the existence theorem Leray and Ohya use a theorem for 
systems with diagonal principal part (see Section 5 of  [7])• To apply this theorem one mul- 

tiplies the system (1.1) with the differential operator corresponding to the adjoint matrix of 

p a A a v. This renders the principal part of  the resulting system diagonal. Due to Lemma 3.4, 
it is enough to multiply with the operator (of lower order) obtained from the adjoint matrix 

by dropping the common factor. Then one obtains the result in a straightforward manner 

by applying the theorem for diagonal systems. [] 
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To end this section we want to make several remarks. 

- The case m = 0 (the Weyl neutrino equation) is the strictly hyperbolic case where we can 

choose ct = c~. This implies that it is possible to prescribe initial data with only a finite 

number of  continuous derivatives which is a known result for strictly hyperbolic systems. 

- It is also worth to mention that in all the cases there exists a domain of  influence, a fact 

which is taken to indicate the hyperbolic character of  partial differential equations by 

many authors. 

- The fact that the smoothness of  space-time is strongly linked with the spin of  the field 

is an interesting feature of  this class of  equations that is not present in other spinor equa- 

tions. One has to say, though, that it is not known whether this is a necessary consequence 

since the theorems only provide sufficient conditions for existence and uniqueness. 

- The diagonal system used in the proof of  the corollary corresponds to the equation 
D m + l  'bAB"'C = 0 that we derived in the flat case in Section 2. This equation is distin- 

't" B , . . .  C , 

guished by the fact that it is a linear equation for ,1~ a S c  such that the coefficients are 
V ' B ' . . - C '  

functions not of  the connection but of  the curvature and its derivatives only. 
AB...C B...C - The inhomogeneous equation C~A(A,I[tB,..C, ) = XA,B,. . .C,  can be treated in a straightfor- 

ward way and one obtains existence and uniqueness of solutions in the same Gevrey 

class as for the homogeneous case provided that the right-hand side is in an appropriate 

Gevrey class, see [7]. 

4. The  formal  characterist ic  initial value problem 

In this section we want to discuss the formal aspects of  the characteristic initial value 

problem on a null cone for this class of  spinor equations. Due to the inherent singularity at 

the vertex of  a null cone this problem is very difficult to analyse and, in fact, there are no 

existence results for many partial differential equations appearing in physics, most notably 

the vacuum Einstein equations. So one has to resort to formal methods to obtain at least 

results about the feasibility of  existence theorems. A very useful method to achieve this 

which is adapted to four dimensions is the method of  exact sets of  spinor fields developed 

by Penrose [9]. It is based on the observation that in Taylor expansions of  spinor fields 

around a point it is exactly the totally symmetric derivatives of  the field that determine the 

restriction of  the field to the null cone of  that point (the null datum). Roughly speaking, if a 
system of field equations for a collection of  spinor fields has the properties that the totally 

symmetric derivatives are algebraically independent and if they determine algebraically all 

possible derivatives of  the fields then the collection of  fields is said to be exact (see [ 10,12] 
for the rigorous definition). 

It has been useful to employ an algebraic formalism based on the four derivative operators 
L, M, M t, N (already mentioned in Section 2) which correspond to taking the four possible 
irreducible components of the covariant derivative of  an irreducible spinor field. We will 

not describe the full formalism here because it would take up too much space. Instead we 

will only give a brief summary and refer for further details to [5]. The totally symmetric 
derivatives of a spinor field correspond to applying powers of  L to the field. We will call an 
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irreducible spinor to be of type (k, k') if and only if it has k unprimed and k' primed indices 

(irrespective of their position). Acting on a spinor field of type (k, k') the operators L, M, 

M', N produce fields of respective type (k + 1, k' + 1), (k + 1, k' - 1), (k - 1, k' + 1), 

(k - 1, k' - 1). We define the operators H and H '  by H49 = k49 and H'49 = k'49 for a type 
(k, k') field 49. 

As we have already mentioned in Section 2, the commutator of two covariant derivatives 
induces commutation relations between the derivative operators which in general involve the 
curvature of the manifold and in addition the wave operator. The curvature is characterised 

by three spinor fields qJ, • and A of respective types (4, 0), (2, 2) and (0, 0). Before we 

present these relations we need to define an algebraic operation between two spinor fields 49 

and X of respective types (p, p ' )  and (q, q'). The only possible way to combine two spinor 
fields within the class of totally symmetric fields in a bilinear way is by contracting over 

some of the indices and then symmetrising over the remaining lot. This operation is entirely 

characterised by the numbers of contracted primed and unprimed indices. So we define the 
bilinear pairings Ckk' by the correspondence: 

A ...AkB ...B~, 
Ckk'(q), X) ~ 49(C...DiC,'...D ,h XAI...AkBI,...B~,E'...F')E...F). (4 .1)  

Then, the commutation relations between the derivative operators can be given explicitly 
as  

[L, N] -- - ( H  + 1)T' - (H '  + I)T - ½(H + H '  + 2)[], 

[M, M'] = - ( H  + 1)T' + (H '  + I)T - ½(H - H')[] ,  
(4.2) 

[L, M] ----- - ( H '  + I)S, [L, m ' ]  -= - ( H  + 1)S', 

[N, M] ---- (H + 1)U', [N, M'] ----- (H '  + I)U. 

The operators S, T and U and their primed versions are curvature derivations and act on a 
field 4) of type (p, p ' )  according to 

$49 = pCjo , (~ ,  49) + p' Col , (~ ,  49), (4.3) 

T49 = p ( p  - 1)C20,(~, 49) + p p ' C l l , ( ~ ,  49) - p ( p  + 2)C00,(A, 49), (4.4) 

U49 = p ( p  - l ) (p  - 2)C30,(q j, 49) + p ( p  - 1)p'C2~,(~, 49). (4.5) 

The action of the primed operators can be inferred from these by formal complex conjuga- 

tion. There exists an additional relation between the derivative operators, the wave operators 
and the curvature: 

L N  - M M '  = - ( H '  + 1)T + ½ H ( H '  + 1)1:3. (4.6) 

The formulae describing the action of a derivative operator on a bilinear pairing are quite 
lengthy and it is not necessary for what follows to present them in detail (see [5]). Symbol- 

ically, they are given by 

0C(49, X) = y ~ o t l C ( O f ,  g) + a2C(f ,  Og),  (4.7) 
o 
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where O is any of  the derivative operators L, M' ,  M or N and ot I and ot 2 are rational numbers 

determined by the bilinear product and the type of  ~b and X. 

In [5] we showed that a collection of fields {¢i } is exact if and only if two conditions are 

satisfied: 

(i) all the "powers" Ll(pj are algebraically independent, 

(ii) all the "derivatives" of  the fields, i.e., all the expressions sCj, where s is an arbitrary 

string of  derivative operators are algebraically determined by the powers. 

By algebraic independence we mean that there are no relations between the powers involving 

only the bilinear pairings (and possibly the curvature). In the same spirit we mean that the 

derivatives are determined by exactly such relations in terms of the powers. Several examples 

have been treated in [3,5,12]. In a certain sense, the powers form a complete and independent 

set of  functions that generate the solution space of  the equations considered. 

Before we consider the general case we want to study the flat case to find the exact set 

structure underlying Eq. (1.1). So let ap be a field of  type (m + 1, m) satisfying the equation 

M'~p = 0. Referring again to [5], we see that in that case the expressions L I M k M ' J N  n []i ~p 

for positive integers l, k, j ,  n and i generate the solution space. By use of  the field equation 

and the commutation relations we have j = 0 since all terms with j > 0 vanish (note 

that in flat space [] commutes with every derivative operator). Similarly, i < m because of  

Proposition 2.1 and n + k  _< m because M and N each contract over one primed index. Due to 
the additional relation (4.6) we have the following: LIMkNnlS]i~ ~ L1MkDNn[] i I~r 

Ll+l M k Nn+l is]i-| lp . . . . .  L t+i M k N n+i ~/ where a ~ b means "a is expressible in 

terms of  b". So we find that in the flat case the solution space is generated by the powers 

of  the functions ~Pki = M k - i N i l p ,  with 0 < k < m and 0 < i < k. Note that there 

are l (m + l)(m ÷ 2) of those functions. This number is in agreement with the general 

observation that the number of  null data per point for a partial differential equation is half 
the number of  Cauchy data per point. 

We now claim that the same set of  fields is also a generating set in the non-fiat case. 

Before we prove this statement we need some more preparation. Let sn denote any string of  

derivative operators of  length n. We say that Sn is in normal order if and only if it has the form 
Sn = L l M k N i M  1j with l + k + i + j = n. With each string s, ,  we can associate a unique 

normally ordered string J',,, of  the same length in the following way: if s~ does not contain M'  

then ~ is the unique normally ordered string that contains the same number of  operators as 

Sn does. If  there are M'  operators in Sn, we first replace each pair (M, M ~) which need not be 

adjacent with (L, N) until there is no M or M'  left. Then we bring the result into normal order 

to obtain ~ .  Thus we get normally ordered strings containing either M or M t but not both. 

Upon applying these normally ordered strings to ~ we get zero for all strings containing 
M'  and for those strings with k + i > m. The others result in L l M  k N i ~  = L 1 l[fk+i,i; these 

functions and their complex conjugates will be called a normally ordered derivative or a 

"power". For each power Ll~ki  we call l ÷ k its order. Furthermore, we need to formalise 
the structure of  the relevant terms that will be encountered. 

Definition 4.1. A t-term ("t" for "tree") is recursively defined either 
(i) as a p o w e r  Ll~ki  or  Ll~ki  for non-negative integers l, k, i or 
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(ii) tO be of the form Ckk,(R, t) where R is any derivative of any of the curvature spinors 

and their complex conjugates and t is a t-term. 

A t-expression is the formal finite sum ~ i  etjti with coefficients cci 6 Q and t-terms t). A 

t-term that is not a power will be called a pure t-term and a pure t-expression is a Q-linear 

combination of pure t-terms. 

The pure t-terms are binary trees with Ckk' as nodes and with powers or (derivatives or) 

curvature spinors as leaves. In fact, exactly one leaf is a power all other ones are curvature 

derivatives. This reflects the linearity of the system. We are now ready to prove the following 

lemma. 

L e m m a  4.2. Let ~p be o f  type (m + 1, m) and satisfy the equation M'  g, = O. Let s,~ be an 

arbitrary string o f  length n o f  derivative operators. Then sn~P can be written in a unique 

way as s,, ~p = ~ lp + t, where ~ ~ Q and t is a pure t-expression which contains only 

powers of  order strictly less than n - 1. 

Proof We use induction on the length of the string. With n =- 1 there are four possibilities: 

LT' = LIP00, M~/, = ~PJ0, M'~p = 0 and N ~  = gql;  so the statement is true. 

Let O denote any of the derivative operators and assume the statement to be true for 

all strings s of length less than or equal to n. Then consider (Os,~)~p = O(s,,~p). By the 

induction hypothesis and linearity of O we need to consider only two cases, namely s,, ~p is 

(i) a pure t-term or (ii) a power. In case (i) we need to employ (4.7) to apply O to a bilinear 

pairing, thus bringing O inside the Ckk' to act on each of its arguments. Note that then 

O is not necessarily the same operator we started with. When it hits the left argument, O 

converts a curvature derivative into a higher one thus producing a t-term of the required type. 

The other argument is again either a power or a pure t-term. In the latter case we continue 

descending down the tree structure until we finally hit the power. Then we need to consider 

OLl~k i .  By the induction hypothesis this is a derivative of 7t of order l + k + 1 < n - 1 

and therefore equal to the sum of the corresponding normally ordered derivative of ¢, and 

a pure t-expression with powers of order less than n - 3. The normally ordered derivative 

is (when non-vanishing) equal to a power of order n - 1, hence the application of O to a 

pure t-expression yields a pure t-expression of the required type. 

In case (ii) we have s,~0 = Ll~ki  with I + k = n. Let us first suppose that l >_ 1. Then, 

OLl~k i  = [0 ,  L]L I-I~pki + L O L t - t  ~ki. In the second term we can replace OL I t~ki 

with the sum of the normally ordered derivative and a t-expression by the induction hy- 

pothesis. Then applying L yields a normally ordered derivative of order n + 1 and, as was 

just shown, a t-expression of the required type. So we are left with the commutator term. 

If O = L we are done. If O = M or O = M'  the commutator term is equal to a linear 

combination of curvature terms by (4.2) and (4.3)-(4.5) which are t-terms of the required 

type. When O = N we obtain apart from curvature terms as before a term involving the 

wave operator. This term can be rewritten using (4.6) as a linear combination of curvature 

terms and the terms L N L  l-I  ~ki and M M t L  l-1 l ~ k  i . The first term has been shown above 

to be of the correct type and with a similar argument one shows that the second term also. 
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Now suppose l = 0 and k > i. Then we need to look at a term of  the form O M M  k - i -  l N i 

The only non-trivial cases are O = M / and O = N. In the latter case we find that the com- 

mutator term is a curvature term and therefore of the correct type. The other term is shown 

to be correct by similar arguments as above using the induction hypothesis. In the case 

O = M I only the wave operator term appearing in the commutator  term needs a different 

treatment. But this has been shown above also to lead to correct terms. 

The last case is I = 0 and k = i. Then we are looking at O N N i - l ~ r .  Here all cases are 

trivial except for O = N and this case is treated as above. So, in summary, we have shown 

that all the appearing terms are of  the stated type and hence the lemma is proved. [] 

From this result we can obtain a set of  equations satisfied by the functions ~ki. Consider 

M ' ~ k i ,  a derivative of  ~p of  order k + 1 ; therefore, there exist equations 

M'lPki = Otki LlPki+l + t~ki (4.8) 

and similarly 

MlPki = ~tk + l,i , (4.9) 

N ~rki = lPk+l,i+l "q- tki, (4.10) 

where otki = 0 if k = i, and where tki and ttki are pure t-expressions which contain ~/j  

with l < k - 1 and possibly L ~ t j  with 1 < k - 2. If  we regard these equations as the field 

equations for the fields ~Pki then we can state the following theorem. 

T h e o r e m  4.3. A f o r m a l  solution o f (1 .1)  gives  rise to a f o r m a l  solution o f (4 .8 ) - (4 .10 )  and 

vice versa. The set  o f  sp inor f ie lds  {7tki : 0 < k < m,  0 < i < k} is exact. 

P r o o f  The equivalence of  the two systems is obvious. We need to show the exactness. Here, 

condition (ii) concerning the completeness of  the powers is an immediate consequence of  

the lemma. The condition (i) concerning the independence of  the powers can be verified 

as follows. Any relation between the powers has to be generated by the application of  the 

commutation relations and (4.6) to the field equation (1.1) and all its derivatives. From 

looking at the structure of  these relations one finds that they cannot link any derivatives that 

contain more than two adjacent L 's .  So all the relations that can be generated must already be 

conditions on the derivatives of  the field equation. But this is a condition only on derivatives 

of  the form snM'g t  and not on any power. The other possible source for conditions on 

powers come from the (derivatives of  the) defining equations of the l p k  i " l [ t k i  = M k- i  N i ~ .  

However, these are not algebraic relations but differential relations between the functions 

and - upon taking derivatives - between the powers. So there cannot be any relations 

between the powers, which therefore are independent. [] 

This theorem shows that the characteristic initial value problem for Eq. (1.1) is formally 

well posed. This is, of  course, a rather weak statement, implying only that one can prescribe 

certain components of  derivatives of  ~p on the null cone of  a point in an arbitrary way and 
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that this is just enough information for a unique solution to exist on the level of formal 

power series. 

The exact set {Tt~i } is not invariant (cf. [12]) because in the expressions for the derivatives 

in terms of  the powers there appear the curvature spinors together with their derivatives 

which are taken to be known background quantities. Thus, these expressions depend on the 

actual point in space-time, i.e., the vertex of  the null cone. Since the field equation comes 

from a variational principle and since, therefore, there exists an energy momentum tensor we 

can couple the system via Einstein's equation to the curvature. Thus, we write G,a, = 87r T,h 

with T,,t, from (2.21). Then we know how to express the curvature spinors q~ and A in terms 

of 7t and its first derivatives. In fact, A = 0 due to the conformal invariance of  the equation. 

We can interpret ~ as describing some kind of  matter field whose energy content creates 

the curvature of  the manifold. We have one more unknown function to consider, the Weyl 

spinor ~ which is subject to the equation (a part of the Bianchi identity) M'qs = 2Mq~. 

Referring to a theorem in [5] we see that the enlarged set {7tki, q~ } will be an invariant exact 

set on A--/provided that we can show that M ~  is a t-expression and that Nq5 = 0. We 

need to interpret the term "t-expression" a little different now because whenever A or 

appear in the expressions we need to substitute their respective representations in terms of 

the fields 7rki. Thus, we obtain an actual tree structure built from the bilinear pairings whose 

leaves consist only of powers L 1 ~Pki and L i ~  and their complex conjugates. This reflects 

the nonlinear nature of  the coupling to gravity. The conditions above are easily verified, in 

fact, N4~ = 0 is just the condition that the energy momentum tensor be divergence free and 

since • itself is a t-expression its derivative is also a t-expression as was shown above. So 

we have effectively proven the following theorem. 

Theorem 4.4. The set {Tzki, t/,} subject to Eqs. (4.8)-(4.10), Einstein's equation and the 

Bianchi identity is an invariant exact set. 

Thus we can make a similar statement as before concerning the system coupled to gravity. 

The formal characteristic initial value problem is well posed. In this case, we do not have 

a similar result for the Cauchy problem. 

5. The general solution in Minkowski space-time 

Our aim in this section is to present the general solution of the field equation (1.1) in fiat 

space subject to suitable initial and boundary conditions. Since each such solution is also a 

solution of []raft = 0 for some positive integer m we will first derive the general solution of 

that equation. Since this does not depend on the existence of spinors and on the dimension 

of space-time we present the result in a slightly generalised form for arbitrary space-time 
dimension. So we are working in M = R I ' ' ' -  J. Then we will specialise to four dimensions 

and restrict the kernel of [[]m to those spinor fields that do satisfy (1.1). Since in flat space 

we are dealing with a partial differential equation with constant coefficients the general 

solution could be found using methods from the theory of distributions. We will, however, 
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not pursue this here but present a different approach which fits better with the applications 

we have in mind. 

We begin by introducing certain rings of functions associated to the null cone of mo- 

mentum space. A function f ( k )  defined on the null cone in "k"-space will be said to be 

admissible if and only if it obeys the following conditions: 

(i) f ( k )  is defined for all null vectors k a, 

(ii) f ( 0 )  ---- 0, 
(iii) the function f is smooth on the complement of the origin, 

(iv) limt ~ 0 ( t r f  (tk)) = 0, for any real number r and for any non-zero null vector ka; this 

limit must be uniform on compact subsets of momentum space. 

Condition (iv) controls both the "infrared" and "ultraviolet" behaviour of the function 

f (k). Condition (iv) is needed to guarantee the differentiability and integrability of Fourier 

transforms involving the function f ( k ) .  

Denote by K, K + and K -  the rings of all admissible functions, all admissible functions 

that vanish identically on the past null cone, and all admissible functions that vanish on the 

future null cone, respectively. Note that we have the vector space direct sum decomposition: 
K = K + ( g K  - .  

For any subspace R of a ring and any vector variable X denote by R[X] the space of 

all polynomials in the vector X with coefficients in the subspace R. In particular if R is 

itself a (sub)ring, then R[X] is a ring. For any non-negative integer m, denote by Rm[S] 

the subspace of the space R[X] consisting of polynomials of degree less than m + 1 and 

by R (m) [S] the subspace of Rm [X] consisting of all polynomials homogeneous of degree 

m in the variable X. In particular, for x a space-time vector-valued variable, we have that 

every element ~b(x, k) of the ring K[x] has an explicit expression as a polynomial in the 
variable x of the following form: 

(X2 

~b (x, k) = Z x"' x a2 . . .  x ar dpa,,2...a, (k). (5.1) 
r = 0  

Here each coefficient tensor, ~a, a2...ar (k), is completely symmetric and is an indexed element 

of the ring K. Also, only a finite number of these coefficient tensors is non-zero. Henceforth, 

each infinite sum we encounter will have only a finite number of non-zero terms. 

Denote by 0~ the derivative with respect to the variable x and by [] = gab Oa 0 b the wave 

operator, regarded as an endomorphism of the space K[x]. Denote by L[x] the kernel of 

this endomorphism and define L+[x], Lm [x] and L+[x] as the intersections of the space 

L[x] with the spaces K+[x], Km[x] and K+[x], respectively. Consider the operator k~O ~ 
as an endomorphism of K[x]. Since the operators [] and kaO a commute, kaO a restricts to 

an endomorphism, denoted D, of L[x]. Note that D is the derivative operator along the 
generators of the null cone restricted to solutions of the wave equation in K[x]. 

5.1. The operator D 

Proposit ion 5.1. The operator D : L[x] --+ L[x] is surjective provided the space-time is 
at least three-dimensional. 
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The proof of  this first technical result is rather lengthy and proceeds in several steps. 

We first perform a decomposition into space and time to obtain an expression for a general 

element of L[x].  First pick a unit time-like future pointing vector t" and denote by S the 

orthogonal complement in space-time of  the vector t ~. We shall use lower case Latin indices 

from the middle of the alphabet to label the (spatial) tensors of  S and shall write Fit for the 

negative of  the (flat) metric induced on S from the ambient space-time metric. Then the 

position vector x a decomposes as x"  = (t, ~i),  where t =-- xat,, and one has the relation 

x " x ,  = t 2 - ~i ~i, where the tensor Fit and its inverse are used for index lowering and raising 

for spatial tensors. Correspondingly, the operators [] and D decompose as [] = ~)r- - A, 

where A ---- Fit 0~ 0~, and D ---- x O, - (K-0f), where k" = (K, tci), x =-- k a t ,  and x. 3~ -= Ki ¢)~. 

Note that since the vector k a is null, we have the relation x 2 = KiKi . 

Given ¢(x ,  k) 6 L[x] ,  define ¢0(~, k) 6 K[~] and ¢1 (~, k) ~ KIWI to be the restrictions 

to the subspace S of  the functions ¢ (x, k) and t,, 0"4)(x, k), respectively. 

L e m m a  5.2. Themapp ing  Ps : L[x] --+ K[~] 2, q~ ~ (q~0, ¢1 ) i san  isomorphism, mappin.e 

each solution o f  the wave  equation to its initial data on S. 

Proo f  Given the pair (¢o(~, k), ¢1 (s ~, k)) e K[~] 2, the function ¢ ( x ,  k) =-- p s  I ((¢o(~, k),  

¢1 (~, k)) may be given by the following explicit formula: 

¢(( t ,  ~), k) = cosh( tA I/2) ¢0(~, k) + A I/2 sinh(tAI/2) ¢1 (~, k). (5.2) 

Here the functions cosh(u) and u - I  sinh(u), with u an operator, are to be interpreted as 

formal power series. Note that in Eq. (5.2) there are no problems with the square root of 

the Laplacian, since the functions cosh(u) and u-1 sinh(u) are both even. Also there are 

no convergence problems, since the functions ¢0 and ~bl are polynomials in the variable ~'. 
[3 

Define the operator A : K [~]2 __+ K [~ ]2 by A =- Ps DPL( "l • Then in view of  Lemma (5.2) 

we have to show that A is surjective. We derive from Eq. (5.2) the explicit formula for the 

operator A, valid for any pair (¢0, ¢1 ) e K[~]2: 

A(¢o, ¢1) = (Eel - (x • 0~4)¢o, tcA¢o - (t: • c3~)¢j). (5.3) 

So we must now solve the following pair of equations: 

x/~ - (x • 0~)a = y, (5.4) 

xAot - (x • O~)/~ = 8. (5.5) 

In Eqs. (5.4) and (5.5) the pair (Y, 8) is a given element of the space K [~]2 and the desired 

solution is the pair (or, r )  which must be shown to lie in K[~] 2. Now it is clear from its 

definition that K [~ ] 2 is closed under multiplication or division by x, so we may use Eq. (5.4) 

to eliminate the function fi from Eq. (5.5). This gives the following equation: 

(A -- (n • O~:)2)ot  = CY. (5.6) 
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Here we have put n . 0~ =--niO~,withni =--tc-lxi,aunitvectorand~r =--x-2(xS+(x.O~)F) E 
K[~]. Note that the desired result is false in two space-time dimensions since the left hand 

side of  Eq. (5.6) then vanishes identically, but the right-hand side need not vanish. So we 

have reduced the problem to solving Eq. (5.6), given ~r c K[~] such that the solution 

must also lie in the space K[~]. 

Proof of  Proposition 5.1. We first prove the proposition for the special case with ~ of the 

form 

O" = ( ~  • n ) P ( ~  2 - -  ( ~  • n)2)qur . (5.7) 

Here the numbers p, q and r are non-negative integers and the function vr 6 K[~] 

is homogeneous of  degree r in the vector variable ~ i  and obeys both of  the differential 

equations Avr = 0 and (n • O~)Vr = 0. It is easy to solve Eq. (5.6) in this case explicitly: a 
solution is just ot = ((q + 1)(n + 2r + 2q - 2)) -1 (~2 _ (~ . n)2)cr, as is easily checked, 

by differentiation. This solution clearly lies in the space K [~] and is of  the form (~ • n)Pr, 
where r satisfies the equation (n • a~)r = 0. 

The rest of  the proof consists in a demonstration that the general case can be reduced to 

this special case by decomposing ~r into a sum of appropriate terms and then using linearity 

of  the operator A. We first decompose ~r as a sum of terms as follows: 

O O  

O" = Z 1(~. .n ) r~r  " ( 5 . 8 )  

r = 0  

Each coefficient ~rr is required to obey the differential equation (n • 0~)~rr = 0. Explicitly 

one has the following formula for the quantity crr, valid for any non-negative integer r: 

O C  - -  S 

~) o. (5.9) 
s = 0  

In particular it is clear from Eq. (5.9) that each function err belongs to the space K[~]. Note 
that the operator A -- (n • 0~) 2 commutes with the multiplication operator (~ • n). Also if 

6 K[~], then we also have (~ • n)rc¢ 6 K[~] for any non-negative integer r. So using the 

linearity of  Eq. (5.6) and the decomposition of  Eqs. (5.8) and (5.9) it suffices to prove the 

solvability of  Eq. (5.6) with both the functions cr and ~ lying in the kernel of the operator 
n • 0~. Denote this kernel (a subspace of  the space K[~]) by N[~]. 

Next we use a standard fact from tensor theory that any symmetric tensor may be de- 

composed into trace-free parts. In the present language one has, for any r ~ N[~], a 
decomposition: 

1 2 
72 -= Z 2~rl (~ -- (~ " n)Z)rrr" (5.10) 

r = 0  

Here we have put ~2 _ ~i~i. In Eq. (5.10), the coefficients rr must obey the differential 
equation: (A -- (n • 0~) 2) rr = 0 and must lie in the space N[~I. Indeed for the case that r 
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is a homogeneous function of non-negative integral degree m in the vector variable ~, each 

function r,- may be given explicitly by the following formula: 

oo 
(X - 2 r )F(X - 2r - s) 

r,. = Z ( -  1)~' 2,-+2SF(X _ r + 1 )F (s  + 1) (~2 _ (s e . n)2)s (A  - (n • a~ )2 ) " - " r .  
,~ = 0  

(5.11) 

with X -= (n - 4 + 2m)/2.  It is easily checked by differentiation that the function r, of 

Eq. (5.11) lies in the kernel of both the operators A -  (n. a s)2 and n. a s as required. The proof 

of  compatibility of  Eqs. (5.10) and (5.11) follows immediately from Lemma 5.3 given below. 
Since every r E K[~] is uniquely a sum of its homogeneous parts and each of its homoge- 

neous parts lies also in the space K[~], Eqs. (5.10) and (5.11) hold also for inhomogeneous 

functions r c N[~], provided that Eq. (5.11) is rewritten as follows: 

:-,c (_1)  s /zF(/z - s) 
r,. = Z  2r+% " F ( / z + r + l ) F ( s + l ) ( ~ 2 - ( s  e . n ) 2 ) , , ( A _ ( n . a  s ) 2 ) ' + ' r ,  

= 0  

(5.12) 

where # - (n - 4 + 2~AO~)/2.  

Combining these results and again using the linearity of Eq. (5.6), we see that it is 
sufficient to prove the solvability of  Eq. (5.6) with the function cr being of the form given 

in (5.7) above. This completes the proof of Proposition 5.1. E~ 

Note that since the above proof  is compatible with homogeneity, it also shows that the 

restriction of the map D to the subspace Lm [x] has ranged the subspace L m -  t Ix], for every 
positive integer m and that the restriction of D to the subspace of LI")  Ix] is surjective onto 

the subspace L Im- 1) [x]. 

L e m m a  5.3. For j;  a non-negat ive  integer, define a func t ion  gj (z) o f  the complex  variable 

z as fo l lows:  

(z - 2 r ) F ( z  - r - j )  
g i ( z ) =  ( - 1 ) r F ( z _ r + l ) F ( r + l ) F ( j _ r + l ) .  

(5.13) 
r = 0  

Then the func t ion  gj vanishes identically unless j = 0 and the func t ion  go is the constant  

func t ion  with a value 1. 

P r o o f  First, the case j = 0 is easily checked by inspection. So henceforth assume, for 

convenience, that j is a fixed positive integer. From its definition it is clear that the function 
gj(z) is a rational function of  the variable z and that lim:---,~c gi(z) = 0. Therefore, the 
result will follow if it is proved that the function gi (z) is periodic. But one has the following 

relations, using Eq. (5.13): 

J (Z -- r ) F ( z  - r - j )  
g i ( z )  = ~ (--1) r 

F ( z  - r + 1 )F( r  + 1 ) F ( j  - r + 1) 
r = 0  
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J F ( Z  - r - j )  
- ~-~ ( - 1 )  r 

F ( z  - r + 1 ) F ( r ) F ( j  - r + 1) 
r = l  

J F ( Z  - r - j )  
= ~-'~ (--1) r 

F ( z  - r ) F ( r  + 1 ) F ( j  - r + 1) 
r=0  

j - I  F ( Z  - -  r - j - 1) 

+ ~  ( - 1 ) r  F ( z  - r ) F ( r  + 1 ) F ( j  - r)  
r=O 

J (Z -- r -- j -- 1 )F (z  -- r -- j -- 1) 
=)--~. (--1) r 

F ( z  - r ) F ( r  + 1 ) F ( j  - r + l)  
r=O 

J ( j  -- r ) F ( z  -- r -- j -- l )  
-k- Z (--1)r  

F ( Z  - r ) F ( r  + 1 ) F ( j  - r + 1) 
r=0  

J (z - 2r - 1 )F (z  - r - j - 1) 
= E ( - 1 ) r  F ( Z  - r ) F ( r  + 1 ) F ( j  - r + 1) = g j ( z  - 1). 

r=0  

(5.14) 

So the function gj  (z), for j > 0 is periodic and therefore vanishes identically as required. 
[] 

5.2.  T h e  F o u r i e r  t r a n s f o r m  o p e r a t o r  2F 

Consider the (n - 1)-form E, defined on the null cone in momentum space defined by 

the formula 3 --  d k  al d k  a2 . .  • d k  an-I = kao 6aOala2"''an-I ~ .  Restricted to the null cone one 

has k a k  ~ = kc, d k  a = 0, so the left-hand side of this equation is orthogonal to the null 

vector k a . The (n - 1)-form Z factorises according to the formula k a E, = d k a m ,  where the 

(n - 2)-form o) is defined by the formula: k [al d k  a2 • • • d k  a"-~] = kao ea°ala2"''a" 1o9. Both 

the forms ,~ and w are closed: dE, ---- dw = 0. 

Given any )~(x, k )  E K [ x ] ,  we consider its generalised Fourier transform .TO0, which is 

a space- t ime field given by the following formula, valid at any point x of M: 

~-(X)(x) =-- f e ikbxbX(X,  k )  Z,. (5.15) 

The integration in Eq. (5.15) is to be carried out over the complete (past and future) null 

cone, equipped with the induced orientation from its embedding in k-space, which in turn 

is oriented by the volume form, ea~a2...a, d k  al d k  a2 • "" d k  an. Note that by definition of  the 

space K [x] the convergence of the integral of  Eq. (5.15) is automatic and the resulting field 

~ ( L )  is everywhere smooth on space-t ime.  

The linear operator }- : )~ w-~ -TOO is defined on K [ x ]  and we denote its range by F [ x ] .  

Also denote by F ,  F + and F + [ x ]  the images under the operator }- of the spaces K,  K + 

and K+[x] ,  respectively. 
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It is clear that the space F[x] consists of  certain polynomials in the variable x a with 

coefficients in the space F ,  so to understand the range of the operator ~- it is sufficient to 

identify the space F .  

To this end, we first introduce for any ~ and t ,  solutions of  the wave equation in space-  
time the (n - 1)-form co(ct, t )  = ~(* d r )  - f i ( .  dot), where • is the Hodge star operator 
on forms for the given Lorentzian metric. Since the wave equation for a field q~ may be 
written as d • (d~b) = 0, it is clear that the form og(a, t )  is closed. Define $2(c~, t )  to 

be the integral of  the form w(a ,  fl), over a space-like hypersurface, oriented towards the 
future, asymptotic to space-like infinity, for the given fields t~ and t ,  which are required to 

be such that the integral converges and is independent of  the choice of  that hypersurface. 
Denote by W the space of all solutions of  the scalar wave equation with initial data, on any 

space-like hypersurface, asymptotic to space-like infinity, in the Schwarz class (the initial 
data for a solution 4~ on a hypersurface is by definition the restriction of q~ and • d~ to that 

hypersurface). Denote by M[x] the space of all polynomial solutions of  the wave equation 

and by Ml[x] its dual space. Then for each ~b(x) e W, we obtain an element # ( ¢ )  of  the 

space M'[x], defined by the formula #(~b)(f)  = I2(~b, f ) ,  for each f ~ M[x]. This gives 
a moment map ~ : W ~ M'[x] ,  ~b ~ #(~b). Then we have the following result. 

Proposition 5.4. F = Ker(/_t). 

The proof of this result follows immediately from the Fourier inversion formula. 

Note that the information in the moment  map # is completely contained in the formal 
power series defined by the formula: p (q~) (Pa) : ~ ( eip~' x", ~b), where the exponential e ip.x'' 

is understood as a formal power series in the null covector pa. The quantity p(ep)(pc,) is 
then a formal power series whose coefficients are trace-free symmetric tensors, representing 

the various moments of  the field ~b. In terms of initial data, the quantity p (~)  represents 

all moments of  the data for the field ~b. In this language the space F is the subspace of the 

space W consisting of all fields ~b, for which p(~b) = 0. 
Our final aim in this section is to determine the kernel of  ~- and to prove the following 

proposition. 

Proposition 5.5. For )~ ~ K[x] we have 

,T'()~)(x) = f eikbxh~,(X, k) 3 = 0 for all x, (5.16) 

,', 'r, )~(i0k + tk) = 0. (5.17) 

Here the scalar t is an indeterminate. Also in writing Eq. (5.17) it is to be understood that 
in each term of the expression of the function Mx,  k) as a polynomial in the variable x, the 
expression is ordered by placing all the factors of  the variable x to the left, before replacing 

the variable x by the operator i0k + tk. 
Before we proceed to the proof of  the proposition we want to clarify the structure of 

Eq. (5.17) with an example. In the case )~ 6 K2[x], we have the expression )~(x, k) ----- 
x axbfl~h + X a fla + t ,  for some symmetric tensor tab, vector fla and scalar t ,  each of which 
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depends only on the variable k. For this case Eq. (5.17) reads as follows: 

0 = (iO~ + tka)(iO b + tkb)flab + (i0~ + t k a ) f a  + f .  (5.18) 

Note that the commutator (i0~ + tk a) (i0k b + tk  b) - (i0 b + tk b) (i0~ ~ + tk a) vanishes identically, 

so there is no factor ordering problem. Expanding Eq. (5.18) in powers of  the indeterminate 

t, Eq. (5.18) is equivalent to the following three equations: 

0 = kakbfab ,  (5.19) 

0 ~- (O~k b a b + k 0 h)fab - ikafa, (5.20) 
a b  . a  

0 -~- O k O k lab -- 10 k fa  -- f .  (5.21) 

Note that Eqs. (5.17)-(5.21) implicitly require that one extend the function )~(x, k) off the 

null cone of momentum space before writing these equations since the formulation of the 

equations uses the full derivative operator Ok. However, it must be possible to rewrite the 
equations so that they are purely intrinsic to the null cone. In the case of  Eqs. (5.19)-(5.21), 

one can see easily that these equations are equivalent to the following three equations: 

0 = kakbflab, (5.22) 

0 = (Lak  b + kaLb)flab -- 3pakbflab -- ipCkckafa ,  (5.23) 

0 = LaLbfab -- 3paLbfab -- ipakaLbfb + 2papbfa  b + ipakapbfb 

+(1 /2)papa  (ikbfb + Bib) _ (paka)2f .  (5.24) 

Here the operator L a is defined for any fixed vector pa by the relation: 

L a ~ 2pbk[bO~ ]. (5.25) 

It is clear from its definition that the operator L a is intrinsic to the null cone. Then 

Eqs. (5.22)-(5.24) hold for arbitrary vectors pa. Alternatively Eqs. (5.23) and (5.24) can 
be rewritten without using the vector pa as follows: 

0 = (Lc akb + kaLe b)flab -- 3kbflcb -- ik, kafla, (5.26) 

0 = L~c °Ld) bfiab -- 3L~c hfld)b -- ik~cLd) bflb + 2flcd + ik{cfld) 

+ l gcd(ikbfl h + fib b) -- kckdfl. (5.27) 

'a .b] Here we have introduced the intrinsic operator Lab, given by the formula: L ~b -~ 2k t o k , 
in terms of which one has the relation L a = pbL ba . Note that provided that Eq. (5.22) also 
holds, each of the Eqs. (5.26) and (5.27) amounts to just one scalar equation, since one may 
verify that the right-hand side of  Eqs. (5.26) and (5.27) are proportional to the quantities kc 
and kckd, respectively. 

Proof of  proposition 5.5. We shall prove the statement for ~ c Kin[x], for every non- 
negative integer m by induction on the natural number m. First the required result holds for 
m = 0, since in this case the function )~(x, k) = fl(k) for some function f ( k )  ~ K. When 
Eq. (5.16) holds, the integral f e ik~,x" f ( k )  ,~ gives the zero solution of the wave equation 
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E]O5 = 0 and it is well known in this case that this entails that the function/3 must vanish 

identically. 

Next suppose the required result is true for all X c Km [x] for all m < s, for some 
positive integer s. We prove the result for m = s. So consider Eq. (5.16) with the function 
k(x, k) ~ Ks [x] now a polynomial in the variable x of  degree not more than s. Then we can 

decompose the function X(x, k) as ,~(x, k) = or(x, k) + fl(x, k), where e~(x. k) c Kl')[x] 
and/4(x, k) 6 K~.-I Ix]. 

Applying the wave operator to Eq. (5.16), we get the following equation: 

0 = f eikhxJ~(2ikaOa + 13)X(x, k) Z,. (5.28) 

Since the function (2ik,,O '~ + D)Mx, k) c K s _  1 [x], we get by the inductive hypothesis, the 

equation: 

0 = [(2ikaO a + D)X(x, k)]x~fi~k+tk). (5.29) 

Next take the partial derivative of  Eq. (5.16) with respect to the variable x. We get the 

following equation: 

0 = f eikhd~(ika + oa)(ot q- fl) ~. (5.30) 

Now we have e~(x,k) = X~e(X, k), where the function ~ " ( x , k )  = s-lOeet(x, k) E 
K~ I [x]. Then Eq. (5.30) may be rewritten, using an integration by parts as follows: 

0 = f eikt'xb(ikaxeote + ikafl + oax) ,~ 

=fe ik"~"( -2k t"o[ l~e+ik" f l+Oa,~)Y ,  + x " f e i k J ' i k % t e Z , .  (5.31) 

Now using Eq. (5.28), we have the following: 

O = f eikbx"(aik,,O" + m)x ~ = f ei~"xh(aiska~,, + aik,,O"[~ + tZk) ,~. (5.32) 

Hence one has the following equation: 

f eikY'ik ela = l f " a . . . .  e " (2~kaO [~ + E3k) ,~. (5.33) 
2s 

This equation is used to replace the last integral of  Eq. (5.31). We then obtain 

f X~ ~ 0 = eikbxb(--2k[aOk]Ote + ika~ + 3a~) -- ~s(2ikaOU13 + D,L) Z.  (5.34) 

Now, by inspection, each term multiplying the quantity e ikl'x~' of Eq. (5.34) is of degree at 

most s - 1 in the variable x. Therefore, we may invoke the inductive hypothesis again to 

deduce 
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0 = --2klaoblotb + ikafl + oa~, -- ~s(2ikaOafl + Ix~-+(iOk+tk) 

[ xa t2)0] (5.35) = 2ik[axb]otb + ikafl + Oa)~ - -2-~s(2ikaOafl + 
A xw-~ (i0~ +tk) 

Now Eq. (5.28), when written out gives the equation: 

[2ikaOa [3 q- [S]~,]x~._~(iOk__tk ) = [--2ikaOaet]x~(iOk +tk) 

= [-2iskaota]x~(iOk+tk). (5.36) 

Substituting Eq. (5.36) into the last part of Eq. (5.35) gives the following equation: 

0 = [2ik[axb]Otb + ikafl + oa)~ + iXakb~b]x~(iOk+tk) 

= [ikaxbOtb + ikafl + oa~.]x~-+(iOk+tk) = [ikaot + ikafl + oa~.]xw-~(iOk+tk) 
• a 

= [i(k a - ioa))~]x~(iOk+tk) = lk [)~]x~(iOk+tk). (5.37) 

In the transition from the penultimate to the last line of Eq. (5.37), we have used the fact 
that the terms arising from the commutator of the operator of multiplication by k a and the 

operator iOk -k- tk exactly cancel the derivative term, the quantity ioa)~. That this is correct 
may be seen as follows. Consider the quantity [(k a - ioa)((xbpb)nf(k))]x~(iOk+tk), for n 

a non-negative integer, p a constant covector and for f ~ K. We then have the following 
equation: 

[(k a - i oa ) ( ( xb  pb)n f ( k ) ) ]x~( iOk+tk  ) 

= [(xbpb)nk a f ( k )  - inp ~ (xbpb) n-I f(k)]x~(io~+tk~ 

= ((i0 b + tkb)pb)nk a f ( k )  - [inp a (xbpb) n- I f(k)]x~(iok+tk) 

= ka((iO b + tkb)pb)nf (k)  + inpa((iO b + t kb )pb )n - l f ( k )  

_ inpa [(xbpb)n-1 f ( k ) ] x ~  (iO~+tk) 

= k a [(xbpb) n f(k)]x~(iOk+tk). (5.38) 

Since any polynomial Z ~ K[x] may be written as a finite linear combination of terms of 

the form (xb po)n f (k), we have the relation [(k a - ioa)~.]x~(iOk +tk) = ka[~.]x~(iOk +tk), 

for any )~ 6 K[x], as required. 

Finally we remove the factor ik a from Eq. (5.37) giving the required result and the 
induction is complete. [] 

5.3. The general solution ofnmTt = 0 

In this section we provide the general solution of the equation [~mlp = 0 in the space 
F[x]. As the construction will show this is equivalent to finding the general solution subject 
only to the condition that the zrm field t~m-l~p lies in the space F (i.e., has zero moment 
map). We begin by proving that there is no loss of generality in restricting the domain of the 
Fourier transform operator Or from the space K [x] to its subspace L [x]. More specifically, 
we have the following proposition. 
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Proposi t ion 5.6. For each )~(x, k) E K[x] there exists a I t (x ,  k) E L[x] such that 

~'(Z) = J--(It). 

Proof  For any ~ 6 K[x],  we have the decomposition, directly analogous to that of 
Eq. (5.12) above: 

(x2)r 
~" = Z 2,m~.v ~'r" (5.39) 

r =0 

( -  1)Sx 2s F ( v  - 2r - s ) (v  - 2r) []r+~,k 

)Vr = Z 22s+r /-'(v 7 7 - 1 S - 7 7 ; 7 i 5  • . ( 5 . 4 0 )  
s 0 

Here we have put x 2 ~ xaxa and v = (n - 2 + 2x ~ 0~ )/2. From Eq. (5.40), by differentiation, 

it follows that the coefficients ~r belong to the space L[x]. In particular, it follows that the 

space K[x] is the sum of the space L[x] with the module generated over the ring K[x] 

by the function x 2. In view of  this decomposition, to prove the required result it suffices 

to show that for any function ~ 6 Km[x ] there exists a function/3 6 Km+l [x]  such that 

5t'(x2~) = f ( f l ) .  Now we have the integration by parts identity, valid for any y,, 6 K [x I, 

such that yak" = 0: 

= f Oa(eik~'Xbya) 3 .  (5.41) 0 

Rephrasing Eq. (5.41) in terms of the operator f ,  we have f(O~'ya + ix~'y,,) = 0, valid for 

any y~ E K [x ], such that yak a = 0. In particular, consider the case that y~ =-- - i k o  j (kl)x,, - 

t ,  xhkh + k ,  xt' th )~, where t a is a fixed unit vector and ko = ka ta • Then, it is clear that y,, E 

Km+j Ix] and that Ya satisfies the identity yak a = 0, so one has f ' ( - O a y a )  = .F(ix"y,  ). 
But by contracting the vectors x a and iya, we also have the relation ix"y,, = x2c~, which 

yields the relation f ' (x2~)  = ~(/3), where fl =-- -Oaya .  Since from its definition it is clear 

that the function 15 lies in the space Km+l [x ] ,  the proof is complete. I2 

In view of this result we henceforth assume without loss of  generality that 5 c is defined 

on the space L[x]. 

The wave operator of  space-time, [] acts naturally on the space F[x]  and one has the 

relation, immediate from the definition of  .T in Eq. (5.15), valid for any )~ c L [x]: 

D u O 0  = 2 i f ( D ) ~ ) .  (5.42) 

We next wish to determine the kernel of the operator [] acting on the space F[x].  By 

Eq. (5.16) above and using Eq. (5.42), we have Uf()~) = 0, for ~ c L [x] if and only if the 
function )~(x, k) obeys the equation: 

0 = (D~.)(i0 + tk ,  k) .  (5.43) 

Let the power series expansion of  the function Z E L[x] be given as follows: 

oo 
Z 1 al )~(x, k) = - - x  x a~ . . . .  xar)~al,> a, (k) (5.44) 

r !  - " 
r=O 
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In Eq. (5.44), each coefficient tensor ~al a2""ar belongs to the space K and is completely sym- 

metric and trace-free. Writing out Eq. (5.43) in terms of  this expansion gives the following 

system of equations, one for each positive integer q: 

1 
0 = E ~.)~p.q(k). (5.45) 

p=0 

Here the quantity Lp,q is by definition kp,q =~ iP O al • • • aap k bi . • • kbq Xal ...apbl...bq. Note 

that there are no factor ordering problems for the quantity Xp,q, since the tensor coefficients 

are all trace-free. Now expanding in powers of  the indeterminate t we have the identity, 

derived from Eq. (5.44): 

~a lq 
,k(i3 + t k ,  k) = E p!q!)~p,q(k). (5.46) 

p ,q=O 

Comparing Eqs. (5.46) and (5.45), we see that if we define #(x ,  k) -- ~.(x, k) - ~.(i0, k), 

then we have the relation: 

0 = #( i0  + tk,  k). (5.47) 

Note that # c L[x], so from Eq. (5.47), one has # 6 ker(.Y'). This gives the relation 

f()~) = 5r(v), where v = )~(iO, k) 6 L0[x]. So we have shown that if DF(k )  = 0, then 

)~ = 0 mod (ke r ( f )  + L0[x]). Conversely, if )~ E ker(5 r)  + L0[x], then it is clear from 

Eq. (5.42) that DSr()~) = 0. So we have proved the relation k e r ( D f )  = k e r ( f )  + L0[x]. 
Rephrasing we have proved the relation ker(n)  = 5r(L0[x]). 

This generalises immediately to our first main result. 

Theorem 5.7. 
the operator IS] m when acting on F[x] is given by the relation 

ker(Dm.Y) = ker(5 r)  + Lm- l  Ix]. 

Equivalently this may be stated as 

ker(Iqm) = ~'(Lm-1 [x]). 

For any integer m > 0 and any space-t ime dimension n > 2, the kernel o f  

(5.48) 

(5.49) 

Proof  The required result has just been proved in the case m = 1, so henceforth assume 

m to be a fixed integer greater than 1. Suppose that qb 6 ker(D m) and • = 3r(~b), for some 
ck c L[x]. Then t3m-0~ ~ ker([]), so we have t~m-Jq~ = .Y(ot), for some a 6 L0[x]. 

By Proposition 5.1 the operator D is surjective as a linear map from the space Ls[x] to the 

space L s - l  [x], for any positive integer s. It immediately follows that the operator D r is 

also surjective as a linear map from the space Ls [x] to the space L s _  r [x], for any positive 
integers r and s, with s not less than r. Therefore we may put ot (x, k) = (2iD) m- J/3 (x, k) for 
some/3 E Lm_l[X ]. Then we have [ s ] m - - l ~  = . f ' ( a )  = .T'((2iD)m-I/3) = [s]m-I  (~" ( /3 ) ) .  

So we have • - )t-(/3) e ker(Dm-l)  and the required result now follows immediately by 
induction. [] 



J. Frauendiener, G.A.J. Spading~Journal of Geometry and Physics 30 (1999) 54-101 8 I 

We have shown that the general solution of the equation D"+l~b = 0 in the space Fix]  
is given by an integral formula 

/ 
where the polynomial inside the integral satisfies the wave equation. The solutions of this 

type are automatically C ~ .  So with this formula we cannot find functions which are merely 
C k differentiable. However, this class of solutions is sufficient for our purposes. More general 
solutions can be obtained using functional analytic methods by starting with this integral 

formula on an appropriate function space and then taking limits. We will not pursue this here. 

5.4. Spinor momentum space 

We now specialise to the case of four dimensions and introduce spinor variables. A 

future pointing null momentum covector k, may be factorised as k,, = kaka,, for kA a two 

component spinor, with complex conjugate spinor kA' More precisely, we have a surjective 

map from the momentum spin space to the future null cone of momentum space, which 
maps the spinor kA to the null vector kA kA,. The inverse image of the vector k,, ---- kA kA' 

is the circle of spinors elkA (with a c C and I~1 -- 1), lbr k, non-zero, and is the zero 
spinor only, when ka = 0. We pull back our previous constructions along this surjection. 

The pullback of the ring K + is then the ring of functions f (kA, kA'), which are everywhere 

smooth and vanish to all orders at the origin, decay faster than any power at infinity and 
which obey the differential equation (kA O~ ~ -- kA, 0 A') f = 0. We shall need to multiply by 

components of the spinors kA and kA,, so it is natural to enlarge the ring K + in the spinor 
case to the ring K which is by definition the ring of all functions f ( kA ,  kA'), such that f 

has a decomposition as an infinite sum: f ~: = Y~r=-~ fr ,  with only a finite number of the 

functions fr non-zero and such that for each integer r we have: 

(i) f,- is globally defined and smooth on the momentum spin space; 

(ii) l imt-~c fr(et~kA, e tdka ,) = 0, for all c~ E C, such that !~(c~) is non-zero; here the 
limit is taken with t real and the limit must be uniform on compact subsets of the 
momentum spin space; 

(iii) (kzO A -- ka, OA')fr(kA, kz')  = rfr(kA, kA'). 
For each integer s, denote by K ~ the subspace of K consisting of all f 6 k" with J) 

vanishing for all r different from s. Then the pullback of the ring K + is the ring K ° and 
one has K P K  q included in K p+q , for all integers p and q. In particular, K ° is a subring of 

and every space KJ is a K°-module. Denote by K j [x] the subspace of k'[x] consisting 
of all polynomials in x with coefficients in the space K j . Denote by L[x] the subspace of 
K[x] annihilated by the wave operator [] and by L j Ix] the intersection of the spaces KJ [x] 
and L[x]. Denote by ~'[7r] the space of all polynomials in the spinor variables 7ra and rrA' 
with coefficients in the ring. K. For p and q any non-negative integers and for .j any integer, 
denote by K~p,q [Tr] and K~,q [:rr] the spaces of all polynomials in the spinor variables rrA 
and 7ra,, homogeneous of degrees (p, q) in the pair (ZrA, rrA,), with coefficients taken from 
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the spaces K and K j ,  respectively. For every element f ( x )  of the space L'[x] and g(zr) of 
the space K[zr], we have unique expansions of the following form: 

o ~  

f (x) = E f A1,4~ ...aratl a2"'AIr xAI a'l xA2A2 " " " x a r  a'r' (5.51 ) 
r=0 

O Q  

g(Jr) = E g A I A 2 " " A p A ' I A ' 2 " " A q  7 r A I T ~ A 2  " " " ygApT~AI13"gA2 "" " 2TA~I" (5.52) 
p,q=0 

In Eqs. (5.51) andA (5.52), the coefficient spinors fAIA2...ArA'IA'2...A' r and galz2...apA~A'2...aq 

lie in the space K and are completely symmetric in all indices. Denote by E~x • L[x] 

~'[zr] the evaluation operator which substitutes the spinor ~ A T r A '  for x a in any element of 
A A 

L[x]. Then it is clear that the map E~ is an isomorphism of the space L[x], with range the 
subspace of K[zr] consisting of all polynomials g(zr) 6 K[zr], which obey the differential 
equation (~a 0A a' - -  W A , O r r  ) g ( z r )  = O. 

To proceed we need the spinor analogues of our previous technical results. First we need 
the analogue of the surjectivity of the operator D of Proposition 5.1. 

Proposition 5.8. The operators kA oa , kA,O a : L ~ "L and kA OA , kA,O A' • g --3. g are 

surjective. 

Proof. Using the isomorphism E~ it is easily seen that it is sufficient to prove surjectivity 
for the operators ka 0 A and k A, oA'. Further by formal conjugation the proof of surjectivity 
for the operator kaO A will yield a proof of surjectivity for the operator kA,O A'. So we 
just need to prove that the operator kA oA is surjective, when acting on the space K[rr]. 
Using the expansion of Eq. (5.52), we reduce to proving that given a totally symmetric 
spinor go...cs'...c' E K,  there exists a totally symmetric spinor fAB...CO'...C' ~ K,  such 

A that k fAB...CB ...C' = gO...CS'...C'. By taking components with a fixed primed spinor 
basis, we reduce further to the case that the spinor gB...cs'...c' has only unprimed indices. 
By contracting throughout with a spinor variable Jr A, we reduce to solve the differential 
equation k z O A f  = g, given g e K[zr], such that the solution f lies in the space ~'[Tr] and 
both f and g are independent of the variable teA'. 

Let t a denote a fixed unit time-like vector and put n A =-- ta k A ' . Note that n A k A = ta k A k A ' 

is always a positive real number unless kA = 0. Then one has the following decomposition 
of the function g: 

o o  

g = E (--1)P p!q! ( k A T r a ) P ( n B T r B ) q g p , q .  (5.53) 
p,q=0 

This decomposition follows from the expression of the spinor ~A in terms of the spinor basis 
n a and k a : 7r Z = ( tC kc  kc, ) - j ( - - k  B Tr B n a -+-nBTrBkA).  Then by the binomial theorem, we 
have the following explicit formula for the quantities gp,q : 

1 
gp,q -- (tCkckc,)p+q [(ha oA) p (kB oB)q g]Jr=O. (5.54) 
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A 

It is clear from Eq. (5.54) that each coefficient gp.q lies in the ring K, so by linearity it 

suffices to prove the required result for the case g = (kazra)P(nBTrB) q, with p and q 

non-negative integers. But then we have the following relation: 

kAVA ] L (q + 1)tckckc ' = (kAygA)P(nBTrB) q. (5.55) 

So f =-- ((q + l)tCkckc,) - l  (ka~ra)P(nszrB) q+j provides a solution in this case. Since it is 

clear that this function f belongs to the space K[zr] and is independent of the variable Jra', 

the proof is complete. Note that by tracking homogeneities through the proof we find that 

if g belongs to the space Kip,q, then we may take the solution f to lie in the space K~+I. q . 
[] 

Second we need to analyse the kernel of  the pullback of the Fourier transform operator 

~ .  This Fourier transform, still called f ,  is defined now as follows, when acting on any 

c g[x]: 

f(qS) =-- f eik"x"dp(x a, kA, kA') S-2. (5.56) 

Here one has £2 = ~AB~A'8' dkA dk8 dkA, dks, and the integral is carried out over all of 

spin space. It is easily shown that the operator f maps K ° isomorphically onto F + (the 

range of f of  Section 5.2 acting on the space K +) and annihilates all the spaces K j, for j 

non-zero. Furthermore, acting on the space K°[x]  the operator f agrees with the pullback 

of our original Fourier transform operator (restricted to the domain K+[x]),  up to a fixed 

non-zero multiplicative constant. 

Proposition 5.9. For each ~b ~ L°[x]: 

~b ~ k e r r  4---> ~b(x u, kA, kA') = (O A -q- iXakA')gPA q- (0 A' -q- iXakA)dPA ', (5.57) 

with ~A E L l [x] and ~bA, ~ L - t  [x] obeying the spinor zrm-field equations: Oa ~Z = 0 and 

Oa gpA' = O. I f  c~ has degree at most m in x, then (PA and gPA' may be taken to have degree 

at most m - l in x. 

Proof. The "if"-part of  this result is a trivial integration by parts, so we assume that f ( ~ )  

vanishes and we establish the formula of  Eq. (5.57) for the function 4~. First if 4~ is inde- 

pendent of  the variable x, then f(~b) = 0 entails that ~b = 0, so the result holds if we take 

~A = ~bA, = 0. So now we assume that the required result is true for ~b any polynomial of  

degree at most m - 1 and take ~b to have degree at most m. Then applying the wave operator 
to the equation f ( ~ )  = 0, we obtain the equation .,~(k,,O~'~) = 0, so by the inductive 

assumption, we have the relation: 

kaOa ~ = (0 A -}- iXakA,)~A q- (O A' q- iXakA)llrA ,. (5.58) 

Here the quantities 1/t a E L l [x] and aPA' 6 L - l  [x] are polynomials in x of degree at most 
m - 2, belong to the spaces L l[x] and L- I [x]  and obey the field equations 0 a 7*A = 0 and 
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0 a 1/f A, = 0, respectively. Write ~b = ~ + /3 ,  where ~ is homogeneous of  degree exactly m 

and fl is of  degree at most m - 1 in the variable x. Similarly decompose the fields 1/r a and 

lpA, as lira = -- ipa q- ff a and aPa, = --ipa, d- era', where PA and PA' are homogeneous of  

degree m - 2, whereas erA and era, have degree at most m - 3. Then the terms of  highest 

degree in the variable x of  Eq. (5.58) give the following equation: 

kaOaot = XakA,PA + xakAPA ,. (5.59) 

Note that by the inductive hypothesis, the functions PA E L j [x] and PA' E L - t  [x] obey 

the zrm field equations: aapA = 0 and OapA, = O. Note that the quantities er, p and p '  are 

respectively of  homogeneity (m, m), (m - 1, m - 2) and (m - 2, m - 1) in the variables 

JrA and 7rA,, respectively. Now put x a = 7cA7~ A' in Eq. (5.59). We obtain the equation: 

-A -A' kao~ orr cr = m(ka,Tr A p + kaTrApp). (5.60) 

0 E~x(TrApA) E Klm_l.m_2[rr] and pl _ Here we have put er ------ Ex~(Ce) E Km.m[7~], p -~ 

Jr A' , m - l k a O A T  and p '  = 1. - a '  , E x (Tr PA ) E Kml_z,m_l[Tt']. Next write p = m -  t~ a ozr -c , for 
0 some r c K°m_2[Tr]  and r '  6 Km_2,m[Tr]. This we can do by the surjectivity of the 

operator ka 0 A proved above. Then Eq. (5.60) may be rewritten as follows: 

A A' 7~A'oA~ 7rA'oA'.gt). 0 = ka(Olr OJr er - - (5.61) 

Now suppose that the quantity v a E ~ ' [ ~ ]  obeys the equation ka va = 0. We may expand 

the vector v a in terms of  the spinors k A, n a and their conjugates k a' and n A' as follows: 

V a = k A k A ' u  + k A n A ' V  + n A k A ' w  q - n A n A ' X ,  (5.62) 

( v a n a n a  ,) ( vanakA ,) 
U --= V -- (5.63) 

(tckC kC')2 ' (tckC kC')2 ' 

( vakanA ,) ( vakaka  ,) 
W -- ( tckCkC,)2,  X -- ( tckCkC,)2.  (5.64) 

A 

It is clear that each of  the quantities U, V, W and X lies in the space K[zr]. When we 

have the relation vaka = O, this implies that the quantity X vanishes• This in turn entails 
that the quantity v a may be expressed as v a = k A v  A' + kA'v  A, for some v A ~ K[zr] 

and v A' E K[~r]: indeed one may take v A = U k  z --}- W n  A and v A' = Vn  A'. Note that if 

v a E KJ,q [~], then by Eq. (5.64) the quantities v a and v A' may be taken to lie in the spaces 

K J + l r  and Ki.q ! [rr], respectively. p,q l 7g] 
Applying this result to Eq. (5.61), we obtain 

A A' Ar-A _A,~A' t _ m 2 k A I v A  ' Ozr O:r er = Tr Orr r -~- zt Ojr T -- m 2 k A w  A' (5.65) 

for s o m e  13 A E K j v a' - I  m_l,m_l[Tt ' ]  and E gm_l ,m_l[Tr] .  Contracting Eq. (5.65) through 
with the spinors 7/" A and ZrA, gives the following equation: 

ff = kAzr A v '  q- kA'Tr A,V. (5.66) 
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Here we have put v =- 7~AU a E Knlt.m_l[Y~] and v '  -- 7rA,v a' E Kml  ~.,,,[rr]. Rewriting 
Eq. (5.66) in terms of the variable x, we find 

ot ~-- Xa(kAotA , q- ka'otA). (5 .67)  

I, 4 Here the fields ota (X) and ota' (x) are determined by the formulas Ej'~ (ota) = m '0~ v and 

E~(ot a') = m - 1 0 A ' u ' .  Also we have ota(x)  E L l [x]  and ota'(X) C L - 1 [ x ]  and both the 

spinor fields ota [X] and ota' [x] obey the zrm field equations and are homogeneous of  degree 

m - 1 in the variable x. By Eq. (5.67), we have the following relation, using an integration 

by parts: 

0 = f (gb)  = f ' (ot  + fl) = •(xa(kAOtA , + ka,otA) + [3) (5.68) 

= .T'(i3A'OtA , + ioaotA + [3) (5.69) 

By the inductive hypothesis, we obtain from Eq. (5.69) the relation: 

A ~ ioa'otA, + ioAota + fl = (Off + ixaka ' )Wa + (O k + i x a k a ) w a  '. (5.70) 

Here the fields coa 6 L 1 Ix] and COA, 6 L -1 [x] obey the spinor zrm field equations and are 

polynomials of  degree at most m - 2 in the variable x. Combining Eqs. (5.67) and (5.70), 

we get 

q3 = ot + [3 = Xa(kaota , + ka'ota) + (Off. -}- i x "ka ' )WA + (Off' 

+ i x a k a ) w a  , -- i(oA'ota , -}- oAOtA) 

= (3A + iXakA,)(Oa + (~)A' + ix"ka)dpa, .  (5.71) 

In Eq. (5.71) we have put q~a ~- OJa -- iota and ~b a, = COa' - iota.  Since it is clear that the 

fields q~a and 4~a, have all the requisite properties, we have proved the validity of  Eq. (5.57) 

for any field q~(x) c L°[x] of degree at most m in the variable x. Therefore by induction 

we have the validity of  Eq. (5.57) in general and the proof is complete. [] 

5.5. The general  solution o f  M '  cP = 0 

If  we wish to construct a space-time field from elements of  K j with .j non-zero, we 

first need to multiply by spinors ka or  k A, as appropriate to map the element to an (in- 

dexed) element of K °, before applying the Fourier transform operator 5 t'. The result is 

a spinor indexed field on space-time. For example consider the standard zrm equation 

O A A'~A B...C D (X) = 0 for a totally symmetric spinor field ~ a  B..-C D (X) of r indices. Taking 

another derivative and contracting, we immediately find that the field CbAB...CD (X) obeys 

the wave equation []~AB...CD (X) = 0. Therefore by Theorem 5.7, we may write its general 
solution (after pulling back to the momentum spin space) in the space F + , as follows: 

f eik"x"otAB...cD(kE, kE') S2. (5 .72)  OAB...CD(X) 

Here the Fourier coefficients OtAB...C D lie in the space K °. Applying the field equation we get 

t he  e q u a t i o n  kAOtAB...CD = O, w h e n c e  it f o l l o w s  tha t  OtAB...cD(kE, kE') = kAkB ".. kckD 



86 J. Frauendiener, G.A.J. Sparling /Journal of Geometry and Physics 30 (1999) 54-101 

now Eq. (5.72) reads as 4 '(kE,kE,) ,  for some function ~b(kE,kE,) 6 K - j .  So 
follows: 

= f eik"X"kakB " "  kckDdp(kE, kE,)S2. (5.73) ~I) AB...CD(X) 

Next we shall derive explicitly the solution by Fourier transform of  the equation O A(A' 
I) B'...C') AB...C = 0 in the special case of  one primed index (m = 1) and then later generalise 
to arbitrary positive m. We know that the field ~ABB' lies in the kernel of  the operator []2 

by Proposition 2.1, so by Theorem 5.7 it admits a Fourier representation of the following 
form: 

• (X)  = f e ik~x" (abx b + a)~'2. (5.74) 

Here the variable X is an abbreviation: X = (x a, ZrA, ~rA,) and we have put q0(X) = 
, A B B r 

(1)AB B (X)r  YE 7r . The Fourier coefficients ab and a depend on the spinors kA and 7r A 
_A'~A,a and their conjugates, but not on the variable x a. Defining the operator M '  = ~t % Oa the 

field equation may be written as M ' ~  = 0. This operator agrees with the operator M '  

defined in Section 2 in its action on the spinor indexed coefficients of  q,. Applying the field 
equation, we get the following equation: 

B z 
0 = 5r(zrB'0B(ikb + Ob)(acX c + a)) = U((zr Oo)(ikbacx ~ + ikba + ab)). (5.75) 

Using Eq. (5.57) above, we deduce the following equation from Eq. (5.75): 

B '  (zr Off)(ikbacx c + ikba + ab) = (O A + ixaka,)Ota q- (O A' q- ixOkA)OtA ,. (5.76) 

Here the quantities ot A and aA, are independent of  the variable x. Equating the coefficients 
of  x in Eq. (5.76), we get 

kB'~rB'kBOff ac = kc,otc + kcotc,. (5.77) 

Eq. (5.77) gives immediately the equation kBOffaCkc = 0, which is solved by a'kc  = 

(rrBkn)2ot, for some or, independent of  the variable ZrA. This gives the relation: ac = 
A ~ kBzrBzrcflc ' + kcYc '  + kc 'Yc ,  for some tic ' ,  Yc' and Yc, with ot = k fla'. After an 

integration by parts applied to Eq. (5.74), the terms involving Yc' and Yc may be eliminated, 
so one may just take ac = k BJr BZrC tiC', without loss of  generality. 

Eq. (5.76) now becomes 

B~ B • D I c (zr Ozr )(tkbkDZr zrCflC x + ikba --~ kDy~DyrB[JB ,) 
• , B ~ D ~ c • B t 

= l k B  Zr k o  :rr kcf lC X + lkB,Zr kBOB a W 3kozrOyrB'flO, 

= ( OA + ixaka')OtA + ( OA' + ixakz)OtA '. ( 5 . 7 8 )  

B ~ D This gives the relation kA,Ot A + kAOt A, = kB zr kDZr kA~A So we have et a, = ko, 

z r B ' k o  2"(Dt~A ' + 6kA, and ol A = --kA($ for some 3. But then the contribution of the terms 
involving the quantity 6 to the right-hand side of  Eq. (5.78) is just (OAkA a' - -  O k k a , ) ( J  = 

(kAOA A' 
- kA, O k )& which vanishes, since by tracking homogeneities we find that 6 lies in 
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the space K °. Therefore without loss of generality, we may take 3 = 0. Then if we put 

x a -- 0 in Eq. (5.78), we obtain the relation: 

~ '  D A'  ikB':rrB'kBO B a + 2kD srDzrB fiB' = kB 're° kDrr O k /4A'. (5.79) 

Next write /4A' = /4A'B 'rrS' + rra,/3, where/4A'8' is symmetric and both/4A'B' and/4 are 
independent of the variables ~a and Sra,. Then putting rrA, = kA' in Eq. (5.79) gives the 

relation: /4A,B,ka'k B' = 0, which entails that/4A'B' = kA'68', for some spinor 31~'. Then 
/4A' = kA'38 '7r8' + rrA,E, for some scalar e. The term in /4A' proportional to kA' may be 

eliminated by an integration by parts, applied to Eq. (5.74), so we may take without loss of 

generality: /4A' = Jra,e. Then Eq. (5.79) reduces to the equation: 

iksOff a = kDTrD Tr a'OkA'e. (5.80) 

Next we put a = aaBT"fa7~ B, for some symmetric spinor aaB, independent of  the spinor 
rra. Putting rrA = ka in Eq. (5.80) gives the relation: aAskAk B = 0, so aaB = kAE~, for 

some spinor Es. Also put eB = esB, rr 8', where el, is independent of the spinors SrA and 

rra,. Then Eq. (5.80) reduces to the following equation: 

6BB,k B ~ -  ioa'~. (5.81) 

Then we have the relation abx b + a = k Drr D (xb rr B Zr B,¢ + e B B, rc B rc B'). Summarising we 
~A(A'clbB') ~ 0 i s  have found that the general solution by Fourier transform of the equation ~, ~ a  B 

given by the formula: 

f eik"~"kBTrB(xCTrc.TrC,e + eCC, TrCT"cC')~f2. (5.82) ~ ( X )  

Here the quantities e and ~ 8 '  depend only on the momentum spinors kA and kA' and are 

subject to Eq. (5.81). Next Eq. (5.81) may be solved by writing ~ = --i~A ka, for some q~A- 
Then one has ~AA' = oA'coA _ kAvA ', for some 4~ A'. The quantities q~8 and 4~ A' are freely 

specifiable. Writing out Eq. (5.82) in terms of the spinors ~bA and q~a', we get the following 

formula: 

f eik,,X"kBrrB(--ixC~rcTrc,gPBk I3 + (0~"49 c -- kCdpC')rrcrrc ,) ~ .  (5.83) q~( X) 

Finally we may integrate by parts in Eq. (5.83) to eliminate the derivative term. This 

gives the equation: 

f eik"X"kBzrB(--ixCC'zrCZrC '¢gBkB + ixC'Ckc¢OBrcBzrc , -- kCZrC(OC'ZrC,)$2 q~( X)  

f eikax a B 2 . C'C , = (kBrr ) Ox ¢~czrc +qbc'rrc')$2. (5.84) 

Note that there is gauge freedom in the pair of Fourier coefficients ~,~ --= (4~A, ~b A'): the 
quantity e of Eq. (5.81) is unchanged under the transformation ¢)a I-~ (~a -I- kAy. Then the 
quantity ~ A A' is also unchanged provided we make the transformation ~ba' w-> q~A' + 3 a ' y .  
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So the complete gauge transformation is ~b~ w-> ~ba + K~ y, where K~ is the operator pair: 
A' K~ = (kz,  O k ). 

Note that Eq. (5.84) may be rewritten in the following compact form: 

• (X) = f e ik'x~ (kBJrB)2z~S-2. (5.85) 

Here Z ~ is the twistor Z ~ =_ (ixazrA ,, ~A'). This result may be generalised immediately: 

Theorem 5.10. The integral 

= f eik"x"dp(Z ~, kBzrB)s-2 (5.86) 

is a solution of the equation Mr~ = O for every 49(Z ~, kBzr 8) ~ K[Z, kAzrA]. Con- 
versely, let q~ E F+[x, Jr, 7r] be a polynomial homogeneous of degree (p, q) in the spinors 
(zr, 7r) with p > q. If • satisfies the equation M '~  = 0 then it has the representation 
(5.86)for some dp(Z, kaTr A) E g [ z ,  kAT~ A] homogeneous of degree (q, p) in the vari- 
ables (Z, kaTrA). 

The restriction p > q is necessary, because the theorem is false when p = q, or when 

p < q, because in each of  these cases the equation M'q~ = 0 possesses a gauge freedom: if 

dp = (7gA,TrAOa)Pp, where p is a polynomial homogeneous of  degree (0, q) in the variables 

(rrA, ZrA,), then the equation 7rA'0A0a~ = 0 is automatically obeyed, for such arbitrary 

functions p, as is checked easily, since the operators 7gA,YE A O a and M'  commute and since 

p is annihilated by the operator M'.  Because of  this gauge freedom, no Fourier transform 

formula based on the null cone of  momentum space is possible, unless one first fixes the 
gauge freedom in some way. 

Proof By straightforward differentiation we see immediately that the function q) obeys the 
equation ~r A' oA Oa q~ = 0. 

Conversely we prove next that the general solution of  the equation M'q~ = 0 may be 

put in the form of Eq. (5.86). The proof is by induction on the integer q. First consider the 

case q = 0. Then the field q~ (X) is independent of  the variable 7rA,, so the field equation 

M'q~ = 0 is equivalent to the equation OAOaq) = 0, which is just the standard zrm field 
equation for a totally symmetric spinor field with p > 0 indices. By Eq. (5.73) the solution 
may be written as follows: 

• (X) = U((kszrS)P4~ ). (5.87) 

Here the function 4> is independent of  the variables (x °, 7~A, ~A'). Therefore the required 
result holds in this case, with the function f ( Z  ~) independent of  the variable Z ~. 

Next consider the case q > 0. Let 4> (X) of  homogeneity (p, q) satisfy the field equation 
M'q) = 0 and put qJ(X) ~ 8A'OAOaq~. Then qJ(X) is of  homogeneity (p - 1, q - 1) so, 

since q - 1 is non-negative and since p - 1 > q - 1, we may use the inductive hypothesis 
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and write the field kO (X) as follows: qJ = U(ikax a (kB Jr • ) P- J 7t (Z ~) ). Define a field F (X) 

by the following formula: 

F(X) = s~((kBzrB)P f (Z~)) .  (5.88) 

We wish to choose the function f ( Z  ~) such that the field F(X) is of homogeneity (p, q) 
A' A and obeys the equation: ~o ---- -zr~A'3A0aF'~ Applying the differential operator 0~ 0~ 0, to 

Eq. (5.88), we get 

A' A -~A'~A o,,F ( = "U( (Ort Orr ( Oa + ika) )(kBrrB)P f ( Z~) ) 
A' A = .T'(O3r Orr Oa(kBTrB)Pf (Z~))  : --p.T'((kBzrB) p- I  oA'kAoa f (Z~))  

= i S r ( ( k 8  rr e)p-I oA'zrfa,ka (OZ) a f ( Z  ~ )) 

= ip(q + 1).~((kBzrB)p-lkA(Oz)Af(z")). (5.89) 

Therefore, we have a solution to the equation a' a (0~ O~ O,)F = q~ provided that the function 
f (Z ~) obeys the equation ka (Oz) a f (Z c~) = (ip(q + 1))-I  g(Z~). 

Having found the function F(X),  we write q~(X) = F(X) + g(X), for some func- 

tion g(X). Then the function g(X) must obey both the equations A' a (0rr 0~ 0a)g : 0 and 
yrA'OAOag : 0. Combining these equations, we get the single equation: oao,,g = 0. By 

contracting this equation on the left with the operator rrsO "a', we see that the function 

g(X) lies in the kernel of  the operator [] whence it admits a representation analogous to 

that of  Eq. (5.73): g(X) = U(),) ,  for some function ) / (ka,  ka',  7rB, 7rB,). Then the field 
equation 0 A O,,g = 0 gives the equation kA b) A y = 0, so y : (kATrA)Prl, for some function 

rl(kz, kA,, rOB,). Putting ~p(Z ~) ---- f ( Z  c~) + 0 now gives the desired representation of the 

function q~ and the complete proof follows by induction. [] 

If we apply this theorem to our special case we obtain the explicit representation given 

in the following: 

Corollary 5.11. For any non-negative integer m, the integral 

I[rB,...c,AB...C(x) . . . . . .  f eik"X"kAk 8 .kC{cbs,...c , +(pE~Br...XEC'I + o 

+ 4~E...FX E , . . . .  x~C,)S2 (5.90) 

.t.AB...C is a positive frequency solution of the equation °A~A'~ R'...C't = O. Conversely, eve~ such 
solution is represented in the above form. 

6. Twistor solution of the field equations 

Let us first introduce the structures which are relevant for the purposes of this work. 

For more details see [13] and references therein. Twistor space T is by definition a four- 
dimensional complex affine space. Denote by V the underlying vector space of  T. At any 
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z 6 T, denote by O(z) the natural isomorphism of the tangent space of T at z with the 

vector space V and denote by 0 the V-valued one form on T whose value at any z E T 

is O(z). It is clear that the one form 0 is exact: 0 = dr. Here the quantity ( is a V 

valued function globally defined on T. The function ~ is unique up to the transformation: 

w+ ( + or, with ot constant. The function ~ serves as a vector valued global coordinate for 

the space T. 

Naturally associated to the affine space T is the space S(T) which is the space of all two- 

dimensional affine subspaces of the space T. Naturally associated to the vector space V is 

the space M(T) which is the space of all two-dimensional subspaces of the space V. There 

is a natural surjection,/z : S(T) ~ M(T), which takes each element of S(T) to its tangent 

space. The map/z renders S(T) as a two-dimensional fibre bundle over M(T) with fibre as 

a two-dimensional affine space. The space M(T) is provided with a natural holomorphic 

conformal structure, which is such that x, y 6 M(T) are null related if and only if the 

intersection x M y is non-trivial. It is isomorphic to (compactified, complexified) Minkowski 

space and the space S(T) can be regarded in a natural way as the affine (unprimed) spin 

bundle over the space M(T). The primed cospin bundle S'(T) is by definition the space 

of all pairs (X, z) 6 S(T) × V with z tangent to X. It is a two-dimensional vector bundle 

over the space S(T). Denote by L'(T) the line bundle f22(SI(T)) over S(T). Note that the 

restriction of the form 02 to any X E S(T) naturally takes values in the line bundle L'(T) 

at X, pulled back to the space X. 

Let f denote a holomorphic function defined on some domain U in T. Then the form fO 2 
is a holomorphic two-form on T with values in S22(V). For suitable X ~ S(T), consider 

the following contour integral: 

, S ( f ) ( X )  =_ f fO 2. 

y(x) 

(6.1) 

Here y(X) is a closed oriented contour of two real dimensions, which is required to lie in 

the intersection of the space X with the domain of the function f and to vary smoothly with 

X. It is clear that the quantity S ( f )  represents a holomorphic section of the line bundle 

U(T) over its domain of definition, M(U) (this domain is an open subset of the space 

of subspaces X, for which the intersection with the open subset U has non-trivial second 

homology). By definition, if the integration contours are regarded as given, the section S ( f )  
is the (unprimed) spinor field associated to the twistor function f .  

More generally let F(z, ~) denote a holomorphic function on the tangent bundle of the 

domain U with (z, ~) ~ U × V. Then consider the following contour integral for (X, z) 
S'(T), such that X E M(U): 

$(F)(X ,  z) =-- f F(z, ~)02. 

y(x) 

(6.2) 

This defines a function S(F)  on S'(T) taking values in the line bundle L'(T) (pulled back 
to the space S'(T)). 
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Lemma 6.1. The contour integrals of Eqs. (6.1) and (6.2) give coordinate independent 
formulations of solutions of the zrm equation and the equation M~qb(x a, yea, YEa') = 
yE a'OA Oa~ (xa ' yea, YEa') = O, respectively. 

Proof. We use lower case greek indices for tensors based on the vector space V and introduce 
the standard representation (~ = ((Z, (A') of a twistor ( in terms of an unprimed spinor 
(A and a primed cospinor (A'. A point X, not at infinity, of the space S(T) is labelled by 
the pair (x", Jr a). The two-dimensional affine subspace of T corresponding to X is the set 
of all twistors (c~ (PA') of the form : 

(ol(iOA,) = (ixAA'pA ' ..~ YEA, PA') ~ x°tA'pA' -]- ]-]c~, (6.3) 

for arbitrary cospinors PA'. Defining X ~8' = (ix AB', S~I), /7 ~ ---- (YEA, 0) and X ~/~ -~ 

xotC'xfiD'fc,D,, we note that the restriction of the one-form 0 a to the space X is given 
by the formula: X*(0 ~) = X ~8' dpB, and therefore the restriction of the form 0°'0 fi to the 

1 A ' B '  ~ , space X is just X*(OuO ~) = X u~ d2p, with d2p -- ~e opA dpB'. Therefore, the field 
S( f ) (X)  of Eq. (6.1) factorises as S( f ) (x  c, rc )  "g = X~fiqS(f)(x c, yEc), where we have 

the following explicit formulas for the function ¢)(f)(x", YEA): 

qb(f)(x a, yE A) ~ f f(xuB'pB' -1- 17 u) d2p 
t l  

p(X) 

= f f(ixAS'pn, -4- yEA PA') d2p • (6.4) 
t l  

p(x) 

In Eq. (6.4) the two-dimensional contour p(X) lies in the primed spin space of the variable 
PA' and varies smoothly with X, avoiding the singularities of the integrand. Differentiating 
Eq. (6.4), we immediately obtain the zrm field equations in the form 0 A 0a ~ ( f )  = 0. 

Similarly, the integral of Eq. (6.2) gives rise to a field O(F)(x a, yEA, yEA') given by the 

following formula: 

~ ( F ) ( x" ,  yEA, yEA') ~ f F(xaB'yEB'; xaB'pB'  + 17°t) d2p 

p(X) 

f F(ixAB'YEB', YEa'; ixAB'pB' q- YEA, PA') d2p. (6.5) 
o ,  

p(X) 

Differentiation of Eq. (6.5) immediately gives the field equation MItP (F) = 0, as required. 
E3 

Note that, depending on the properties of the twistor functions f or F, the fields qb(f) 
and q~ (F) may contain many different helicities or irreducible spinor parts. 

Denote by O(p, q) the sheaf of germs ofholomorphic sections of rank p totally symmetric 
covariant tensors on projective twistor space P(V), taking values in the sheaf O(q) (the 
sheaf of germs of holomorphic functions h (()  homogeneous of degree q in the variable (). 
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Such a section is described non-projectively by a tensor with p indices: fotlOt2...ot p ((°¢)0~1 
0 ~2 ®. • • ®Oap, such that f ~  ~2---% is completely symmetric, holomorphic, homogeneous of 
integral degree q - p in the variable ( a and such that 0 = ( ~' fcq ~2---up ((~). Our main result 
is that the sheaf cohomology group H 1 (U, O(p ,  2p - 1)), for p a positive integer describes 
the general analytic solution to our higher spin equations (the spin is p + 1), for suitable 
domains U in twistor space. This restriction to analytic solutions is not mandatory: by 
replacing ordinary cohomology by C.R. cohomology one can obtain non-analytic solutions 
from the twistor theory. We do not discuss this further here. 

6.1. Twistor description fo r  the spin (3)  case 

As before we begin with the spin (3) case and treat the general case later. In this case the 
object of study is the group H j (U, O(1, 1)). We shall use the contour integral description to 
get at the results. Each calculation that we do then corresponds, according to well-established 
procedures, to an appropriate calculation using sheaf cohomology as described for example 
in the books of Penrose and Rindler. For H 1 (U, O(1, 1)) we use functions fc,((), which 
are homogeneous of degree zero in the variable (.  For a function g(() ,  homogeneous of 
degree zero, the corresponding space-time field g s c  is of spin 1 and is given by a contour 
integral according to the standard formula of Hughston: 

f . AB' C' g B C ( X  a) = O80Cg( lX  PB P A ' ) P  dpc'. 
y(x) 

(6.6) 

Here the operator On denotes the partial derivative with respect to the unprimed spinor part 
(8  of the twistor variable (t~. Also the one-dimensional contour F (x) is closed, avoids the 
singularities of the integrand and varies smoothly with the point x. 

Next we need the explicit action of the twistor operator ( ~ on the field g s c .  Multiplication 
of g by ( gives a function homogeneous of degree 1 for which the corresponding field (g 
is of spin 3 and is given by the following formulas: 

P 
((g)~CD (xa) I ~ • EF' , , G' = OBOCOD(( g)(lX PF , DE )P dPG'  

d 
y(x) 

f ct . EF'  = (338OcOog(lx PF PE') 

y(x) 
vaB'  ,~ A PB uBOCODg(ixEF'pF', PE'))P G' dpG' 

• ~o~B'-  r = 3 ~ g C D  -- l~t O8 8gCD. (6.7) 

In Eq. (6.7), the twistor 8~ -- (38 A, 0). Also we have used the fact that inside the twistor 
integral the operator 8b is represented by the operator ips, 8B. Applying these results to the 
indexed function f~ ((), allowing for the extra index, Eqs. (6.6) and (6.7) become 
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dP[~CD(xa) = f OCODfl~(ixAB'pB', PA')Pc' dP C'. (6.8) 

y(x) 

(( qg)~CDE "~- 3~(b~DE -- iX  a t '  OC'CdP~DE. (6.9) 

If we now impose the condition ~'af~ = 0, we see that the trace over the twistor indices 
of Eq. (6.9) must vanish. From the right-hand side of Eq. (6.9) this gives the following 
condition: 

0 = 3dpCDE -- ix~C'Occ'qSuDE = 3dPCDE + xAC'OcC,~ADE -- iOA'c~aAE 

---- 3dPCDE -- 2dPCDE + OCC'(xAC'ffgADE -- iqSDC'E) 
i 

= ~tCD E -- 2EC(D~E) -- iOA,c~AE , (6.10) 

A' ' A ~ • A'C with 4~BC = ((bABc, (bDE), ~ABC = 7tABC + EA~87tCI and ~ E  = qbDE + lX qSCDE, 
A, where the spinors ~bDE, ~/ABC and are completely symmetric. 

Eq. (6.10) gives in particular the equations ~PCOF, = iSA'~cTtA'~) and ~PA = (--i /3)08B' 

~A 88'. Hence the field CPASC is completely determined given the field ~A' B. Once the field 
~bABc is known, the field ~bA'B can be recovered from the formula: qSfB(X e) = ~pAa'B (x e) -- 
• A ' C  e A ~ IX 4~CAB ( X ) .  SO knowledge of the single field ~PA8 (and its derivatives) is completely 
equivalent to knowledge of the original field ~b~sc. Finally the field equation for the field 
~b~sc is just the standard zrm field equation 08'8~c~8C = O. This equation immediately 

~B(A'drB') implies (by straightforward differentiation) the equation ~ ~'BC = 0 and conversely it is 

seen easily that the equation O B(A' lpff~ = 0 implies the field equation 0 B'B q~ t~ C = 0. So we 

have established that the cohomology group H l (U, (.9(1, 1)), for appropriate domains U in 

projective twistor space is isomorphic to the space of solutions of the equation 0 B(A' ~pB~! ----- 

0, on the corresponding domain in space-time, with the field ~B c being totally symmetric. 

Finally from the definition of the field ~PAAB and from Eq. (6.8), we have the following 
A ~ contour integral expression for the field ~PA B: 

lirA' (X a ) f AB = OAOBfA'(ixAB'pB', PA') 
,1 

y(x) 

+ixA'C OAOB fC(ixAB'pB' ,  PA')PC' dP C'. (6.11) 

Contracting Eq. (6.11) through with 7rAnBT(A% and using Cauchy's integral formula to 
reduce the integral to a one-dimensional integral, we find complete agreement with Eq. (6.5), 
where the function F (z, if) =-- z a fa  and the field • (F)  (x ~ , 7r A, rra,) is then a fixed constant 

! 

multiple of the field ~pa 8 (xe) Jr a 7/" B ~A'. So we have shown the following proposition. 

Proposition 6.2. There exists an isomorphism between the sheaf  cohomology group H l (U, 
(,,9(1, 1)) and the space o f  holomorphic solutions o f  the equation O A A'~/) AB = O. 
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6.2. The general spin case 

Consider the interpretation of the twistor cohomology group H 1 (U, (.9 ( p, q)). We as sume 
that the integers p and s ~ q - p + 2 are positive (later we shall restrict further by 
requiring that s > p). As discussed above, a representative element is an indexed function 

fot~2...~p (~), which is completely symmetric, holomorphic, and homogeneous of degree 

q - p in the twistor variable ~ and such that 0 = ('~J fcqot2...otp (~). The unprimed spinor 

field corresponding to the function f,~ja2...otp may be given as follows: 

~ ( Z o t ' x a ' 7 ~ a )  ~- t F(Za '  XaB'PB' + H o t ) d 2 p "  (6.12) 
* ]  

z(x) 

Here we have put F(Z ,  ~) -- Z '~ Z ot2 . . .  Zap fot~otz...otp (~). The field (o(Z '~, x a, Jr a)  is a 

homogenous polynomial of  degree (p,  s) in the pair of  variables (Z a, Jr a),  with coefficients 
obeying the zrm field equation by Lemma 6.1. Our first objective is to obtain a formula for 
the action of the twistor variable ¢ ~ on such a field. Denote the result of  this action by (¢ 4~) ~ . 
Then for this field we have the expression: (~b)~(Z,  x, 7r) = x~C'qbc,(Z, x, rr) + H~q~, 
where the field q~B' is given by the following formula: 

x, re) = f Pc, F(Zot, XOtR'pB, + Hot) d2p. (6.13) ¢c,(Z, 
y(x) 

Multiplying both sides of  Eq. (6.13) by s + 1, we manipulate Eq. (6.13) as follows: 

(s + 1) 49c,(Z, x, zr) = 7~a OA f pc, F ( Z  a, xeeB'pB, --[- H °t) d2p 

×(x) 

= Jr A f pc,((O¢)AF)(Z a, xaB'pB, + HU)d2p  = --iJrAOAc,qb(Z,x, 7r). 

y(X) 

(6.14) 

Summarising we have established the formula 

(~q~)fl .~_~A (--i(s-~-I)-Ix[JA'o a + ~ A ) ~ .  (6.15) 

Next, we consider the condition 0 = ~-at fotlOl2...O~ p (~), which is equivalent to the condition 
0 = ffa(0z)ot F.  When applied to Eq. (6.15), with the field q~ replaced by the field (0z),~b 
this implies 

0 =7C A ( ix~A'Oa - - (S  -'}- 1)'A fl) (0z)M, 
A BA ~ • A A ~ = - z r  x Oa(OZ)SCb--(s + l)zrS(OZ)BCb+lzr Oaaz 4~. (6.16) 

Next we perform a change of variables and write the twistor Z a = (Z A , ZA,) as follows: 
Zet vot B' , = -~ zo + z B ~ ,  so we have Z A = ixazA , + Z A and ZA, = ZA'. Then the field ~b 
becomes a function of  the variables (x a , Jr A, zot), where z '~ = (z z , ZA'). Under this change 
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of  variables, we make the derivative replacements: 0,, w-> Oa - iZA'(Oz)A, 0 A ~ 0 A ,  
A' (0Z)A W-> (0:)a and Oz ~-~ OA' - i x a ( a z ) z  • Eq. (6.16) then becomes 

0 = - -TrAxBA' (o  a -- iZa,OZ)OB~b -- (S "q- 1)7"(BOBq~ 

+izrA (oa -- iZa,Oa)(O a' -- i xBA'OB) f  b 

~- 7rAOa(--S ~- 1 + Y ' )O  + iTrAOaOa'dP . (6.17) 

Here we have put O a =-- ( O:) a ,  0 a' =-- (O-) A' and y '  =- Z A,O j ' .  Also define y = zA O a . Note 
that the field 0 obeys the equation (F + Y' - p)~b = 0. 

Eq. (6.17) may be regarded as giving a partial propagation of the field 0 in the z A 

directions. But we also have the field equation obeyed by 0, which in terms of the original 

variables is the zrm equation o a o ,  0 = 0. In terms of the new variables this equation 
becomes the equation: 

o . A = --  IZA'O~ OZO. (6.18) 

Removing the factor 71" a from Eq. (6.17), we get the following equation, valid for some 
field X : 

OA(- -S  -'[- 1 + y ' )~ ) -q - iOaOa ' (9  = 7 t A X .  (6.19) 

Applying the operator 0 a to (6.19), we get 

(s + 1) x = OAOA(--s -q- 1 + Y ' )O  + iOAOaOA'( O. (6.20) 

Then, applying the operator i0 a' to (6.18) gives 

0 = ( y ' +  2)0AOAq~ + ioA'oAoa~b, (6.21) 

and, finally, subtracting Eq. (6.20) from Eq. (6.21) yields 

X = _ O A  OA~O" (6.22) 

From Eqs. (6.19), (6.21) and (6.22), we get the following relation: 

r ' B' B (2 + y )(s - 1 - Y')0A0 = i(2 + y')OaO A 0 -- inA0 0~ 0/,0, (6.231 

and we also have a field equation which is obtained from Eq. (6.18) by contraction with the 
spinor z A': 

B' B 0 = z 0F 0h0. (6.24) 

For the present purposes, Eqs. (6.23) and (6.24) are the key equations. Note that Eq. (6.17) 

is a consequence of  Eq. (6.23), since the operator (2 + y ' )  is invertible. To analyse these 

equations most easily, we henceforth restrict to the case that the quantity s - p is positive. 

The quantity 0A 0 and the right-hand side of  Eq. (6.23) are each sums of  terms homogeneous 
of  degrees 0 to p - 1 in the variable za, .  So with s - p positive, the operator (s - y '  - 1 ) has 

a well-defined inverse acting on such quantities. So we may rewrite Eq. (6.23) as follows: 

A' 0a~b = i(s - 1 - y ' ) - l ( O a O  ~ - (2 + y ' ) -JrraOB'Of fObO).  (6.25) 
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We need to check the compatibility of  Eqs. (6.24) and (6.25). First we show that the 
0a derivative of  the right-hand side of  Eq. (6.24) vanishes modulo equation (6.24) and 

(6.25): 

B' B zB'oB OaZ Ore Ob(b = ~bOa(9 

• B' B __ __ y t ) - I  A' t ' =lZ 37rOb(S 1 (Oa3 (9--(2+y)-lTraOCOCOcqb) 
t o~ o A ~ 

= i ( s  - y')-~(1 + y ' ) - l ( (1  + y  )z ° O~rObOaO cb 
B' B C' C 

--Z Ozr Ob~aO Orr 0c(9) 

t B B'A r A' B ~ B =i(s--y ' )- l ( l+y')- l(--( l+y)OrrObOaE dp--Z 3a3 3~rOb(p 

.~_~ A Eo ~ Or c ObO~r OC~) 

B' = ( i /2 ) ( s  - y ' ) - I ( 1  + y ' ) - l ( - ( 1  + y' ) (O~)a[]dp -- 2Z Oa oa'o~Obfb 

--2y' ~a'B' G Off Ob¢) 
~-B  A'B'-  

= ( i / 2 ) (  V '  -- S) -1 ((O~r)aDq) + ZO~r E OaObd?) 

= ( i / 2 ) ( y '  -- S) - l  ((3~r)aE2qb + OBEAB[S]q)) = O. 

F i n a l l y  w e  n e e d  to s h o w  that  a p p l y i n g  the  o p e r a t o r  3 a to  the  r i g h t - h a n d  s i d e  o f  Eq .  (6 .25 )  
f / ! gives zero. So it is sufficient to show that the quantity (2 + y ) 0 A Oa 0 a (b -'1- 7~ a Oa 0 B oB Ob 

vanishes, modulo equations (6.24) and (6.25). We see this as follows: 

(2 q- y t )OaoaoA '~  -~- 7~AOAOB'OBOb~ 

(3 + ~/t)OAOaOa'(b -~ B' B a = 0 Ore ObTg OA(9 

B' B A = OaOa'(2 "q- V')oAffi + 0 0 r r  ObT~ Oa~) 

. . . .  iOaOa,(S 1 y t ) - - I ( (2  @ y')OAc,  OC' q) 7g a 0 B' Or rB ObO) 

+ ioB'oBOb(S -- 1 -- y')-lzraOaOa'qb 

= - i ( s  2 yt)-l((7~aOA'Oa)(OB'OBOb)fp B' B a A' - - - ( 2  G0b)(zr  0 G ) 4 ~ ) = 0 .  

Thus Eqs. (6.24) and (6.25) are integrable. If we  now write 4) = ~--~P ~bk, with F~bk = k~bk, k=0 
for 0 < k < p, we  get from Eqs. (6.24) and (6.25) the fol lowing equations: 

B' B 
z O~r 364~k = 0 (6.26) 

Oa~Pk+l = i ( s  - -  p + k)  -1  (OaOa'~k -- (1 + p -- k)-lTrAOB'OBOb(ak). (6 .27 )  

Eq. (6.26) is valid for 0 < k < p. Eq. (6.27) is valid for 0 < k < p. Note  that Eq. (6.27) 
entails a recursive formula for the quantities 4~k: 

A B ~ B 
i ZAOaOA,(9 k _ Z ~AO_3~rO__b~k 

q~k+l= ( k + l ) ( s - p + k )  l + p - k  ] '  
f o r O < k  < p. 

(6.28) 
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Eq. (6.28) shows explicitly that the entire field 49 is uniquely determined by the field 49o. 
The integrability of  Eqs. (6.24) and (6.25) shows that the system of field equation (6.18) 

~Bt qB ~ _t for the field 49(x a , 7r a , z '~) is completely equivalent to the single equation ~ % o/~q)0 = 0, 
for the field 49o(x ~ , zr a , ZA'), in the case s > p. 

Summarising, we have outlined a proof of  the following theorem. 

T h e o r e m  6.3. For any pair o f  positive integers (p, t ), there is an isomorphism between the 

twistor sheaf  cohomology group H l ( U, (Q(p, 2p + t - 2)) and the space of  holomorphic 

solutions o f  the field equation -B'~B o -" z orr hq) = O, where thefield 49 is homogeneous of  degrees 
(p + t, p) in the variables Ur A, ZA'). 

In particular, we have the following corollary. 

Coro l la ry  6.4. The space o f  holomorphic solutions o f  the equations 

AB...C 
OA(A'~rB,...C ,) = 0 (6.29) 

for  spinor fields with m + 1 unprimed and m primed indices is isomorphic to the twistor 

sheaf  cohomology group H 1 (U, O(m + 1, m)). 

We would like to make several remarks at this point. Firstly, although we have shown 
the existence of the twistor correspondence for several different kinds of  fields (i.e., with 

different index structures when considered as spinor fields on space-t ime) it is only the 

fields with homogeneity (p + 1, p) that can consistently propagate on a curved manifold. 
All other fields suffer from the existence of consistency conditions. The twistor treatment 
in this work is to some extent new in that we use an affine twistor space. This allows 

to incorporate all homogeneities into one formula (see e.g., Eq. (6.4) in comparison to 

(6.6)). 

6.3. The group representation 

We observe that there are natural operators acting on the twistor cohomology groups 
H I ( U ,  O(p ,  q)). Indeed consider the operators pc4~ and Q,~ and E~, which act on a 

representative function F (z, ¢), homogeneous of degrees (p,  q - p)  in the twistor variables 

(z, ~') and obeying the differential equation ff - O: F = 0, as follows: 

P ( F )  = (z m ~)F,  

Q(F)  = (0: m 3()F,  

E ( F )  = (z ® Oc + ~ ® O~ -+- 3)F. 

(6.30) 

(6.3 1) 

(6.32) 

In Eq. (6.32), the operator 8 is the Kronecker delta tensor acting on the representative F 
by multiplication. Note that each of these operators commutes with the operator ( • Oz. The 
operator P gives a map from H l (U, O(p ,  q)) to H 1 (U, O ( p  -F l ,  q + 2)), the operator Q 
maps H I (  U, O (p,  q)) to H I ( U ,  O ( p -  1, q -  2)) and the operator E maps H I (  U, O (p,  q )) 
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to itself. These operators generate a Lie algebra under commutation. Indeed, by direct 
calculation, we have the following commutation relations: 

[P '~,  PY~] = 0, [Q~/~, Q×~] -- 0, 

_xl~ ~,N [E~', P ~ ]  = -28~aP/31×, 

[E~', Q~zl = 23~ QZ]~, [E~', E~] = ~ y 

(6.33) 

A dimension count gives dimension 28 for this algebra, six for each of the operators P 
and Q and 16 for the operator E. The operator E generates the complex general linear 
algebra G L (4, C). The algebra GL (4, C) in turn is isomorphic to the conformal orthogonal 
algebra C O (6, C) (the orthogonal algebra together with a dilation). Adding in the operators 
P and Q to this algebra gives the complete algebra of 0(8,  C), regarded as the conformal 
algebra associated to 0(6,  C), with P forming the translations, Q the generator of special 
conformal transformations, the trace-free part of E generating rotations and the trace of E 
giving the dilation. If we introduce the standard pseudo-hermitian form on twistor space 
of signature (2, 2), then this algebra has the natural real form O (4, 4), with the operator 
iE self-conjugate and Q the pseudo-hermitian conjugate of P. So we have shown that the 
direct sum over p of all the cohomology groups H 1 (U, O ( p ,  2p  + t - 2), gives, for each 
fixed t, a complex representation of the Lie algebra of the group 0(4,  4). It remains an 
open question whether or not this representation is unitarizable. Indeed the "natural" inner 
product, derived from the action of section one above is not positive definite in the case 
of spin greater than ½. So it would seem that the representation is "naturally" defined on a 
space with a "natural" inner product, but not a Hilbert space. If one took such representations 
seriously, it would apparently require enlarging the framework of quantum mechanics to 
accommodate "negative probabilities". 

Finally we note that although this algebra is most easily derived in the twistor picture, one 
can easily translate into the space-time picture, using the techniques of this section. In the 
space-time picture the operator E acts on the fields as the (complex) conformal algebra of 
space-time. The operators P and Q and E act as follows on a field 4) (x a , rCA,, 7r A ) obeying 
the equation M'4) ---- 0 and homogeneous of degree s in the spinor zrA: 

1 1)zrc,jrCxC,[c~p~cl4), 
pc,~ ¢ = (s + 

1 C' C 
Q ~ 4 )  - (s + 1-----) (Orr)cOrr XI~Q~lc '4) '  

E ~ ¢  = --ixD'c~X~Od4) + xD'°t~C,[37rD, OC' ¢ -- X~(Ozr )D(TrC 4)), 

where we have used the following definitions: 

PB ---- (s + 1)6~ -- "--O'a- • B I A  Ob, QuB' =- (s + 1)~uB, -- 1Xu Oh, 

' B' B (sB, __ixBA'), xB'ot ==_ ( i x  B A, ~A,) ' Xc ~ 

_ 0 ) ,  = ( 0 ,  
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7. Conclusion 

We have presented the properties of a class of linear equations for fields with half integer 
spin m + ½ which generalise the Weyl equation for a neutrino. We have shown how the 
equations arise as Euler-Lagrange equations for a variational principle. The equations are 
of hyperbolic type in the sense that the Cauchy problem is well posed and that there exists 

the notion of a domain of influence. The characteristics of the system are multiply sheeted. 
The fields propagate freely on any curved background, i.e., there are no constraints on 

spatial hypersurfaces to be satisfied by the Cauchy data. The solutions lie in certain Gevrey 
classes provided that the Cauchy data and the metric of the underlying manifold do so. 

We find a strong relationship between the spin of the fields and the smoothness of the 
metric, ranging from only C k in the neutrino case up to analyticity in the limit m --+ ec. We 

analysed the characteristic initial value problem using the formal method of exact set and 
showed that it is well posed in the curved background case as well as when the system is 

coupled to gravity via the Einstein equation. It is interesting to note, that this is a system of 
partial differential equations that is not symmetrically hyperbolic (unless m = 0) but still 

allows the description via an exact set. All other examples of exact sets so far have been 
systems of equations which were also symmetrically hyperbolic. This implies that those 

two characterisations are not mutually included one in the other. We have given the general 
solution of the equations in Minkowski space by first solving the equation n'n+14~ = 0 

using Fourier methods and then deriving the Fourier representation for positive frequency 

fields. Finally, we presented a twistor correspondence between the space of holomorphic 

solutions and sheaf cohomology groups on projective twistor space. 

The solution space of the equations in flat space is a representation space of the Poincar6 
group. In contrast to the case of the massless free fields, however, this representation is 
reducible unless m = 0. This can be easily seen from the fact that the entire solution space 

for spin 2m - 1 is mapped injectively into the solution space for spin 2m + 1 by the operator 
L. The solution space is also a representation space for the conformal group. It is not yet 

known whether this representation is irreducible. 

It would be interesting to find similar classes of consistent higher spin equations for integer 
spin generalising the Maxwell equations. So far, the attempts have been unsuccessful. 
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Appendix A. Gevrey classes of functions 

Essential in the proof of existence and uniqueness of solutions of non-strictly hyperbolic 
systems of partial differential equations is the notion of Gevrey classes of functions. These 
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are sets of  C°~-functions, labelled by a real number u > 1 which in some way interpolates 

between analytic functions (or = 1) and functions which are only C k (conventionally made 

to correspond to the case ot = o~, see below). 

Defini t ion A.1. Let S be an open set in ~1, p _> 1 and ot > 1. Then y~pC~)(S) is the set of  

functions f : S --+ C such that 

1 IlDCrf, S]llp/1~1 < oo, (A. l )  sup 
(1 + la l )  ~ 

where a is a multi-index a = (al . . . . .  a/) ,  lal  = a~ -4- . . .  + at and IIf, Slip is the usual 

LP-norm of  f .  

Similar classes are defined to characterise the behaviour of  the functions with time. 

Defini t ion A.2, Let 27 : =  [0, T] x S be a strip in ~ t+ l ,  p > I, n > 1 and c~ _> 1. Then 

/fl,~c~)(27) is the set of  all functions f : 27 --+ C such that 

1 i fD~+[~f  ' Stllpt/l~l < ~ ,  sup 
~,,~.x 0 (1 + la l )  ~ 

(A.2) 

where, again, a and fl are multi-indices with a0 ---- 0 (i.e., a refers only to "spatial" 

derivatives) and 0 < x ° < T. St is the slice x ° = t, as usual. 

We extend the definition with ot = o¢ by the rule that (1 -4- la l )  c~ --  1 for lal  = 0 

and (1 + l a l )  ~ = 0 otherwise. Then /p~°¢)(S) is equal to the function space Lp(S)  and 

/p,(O~) (27) is equal to the set of  all functions for which [I D¢~ f ,  St II is a bounded function of  

t for all 13 with Ifll < n. 

For p = oo, 1 = 1 and for real valued functions this is the classical case of  Gevrey [6]. 

In that c a s e / ~ ) ( S )  is an algebra which is closed under the composition of  its elements. A 

similar property holds in the general case (see [8]). 

Here are some basic properties of  the Gevrey classes: they grow with a ;  if a j < c~2, then 
~pn'(ce2) t Y?~ yp'~°~1)(27) C rp , ~ , .  Also yp'(~)(27) C yfm,(~)(27) i f m  > n. I f  or = 1 the classes 

consist of  functions which are analytic in x I . . . . .  x l, but for a # 1 one can show that 

there exists a partition of  unity into elements of  the classes with arbitrarily small support; 

functions with compact  support are not necessarily zero. 

The essential qualitative distinction within the Gevrey classes seems to be between the 

case ot = l and ot > 1, the latter case permitting domains of  influence and thus allowing the 

study of  wave propagation. This indicates the hyperbolic character of  the equations under 

consideration. The second distinction is between the cases of  finite a and a = o~. Infinite 

permits the existence of  only a finite number of  derivatives and thus the appearance of  

shocks is possible indicating the strictly hyperbolic case. 
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